File size: 31,398 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import os
import tensorflow as tf
import diffvg
import pydiffvg_tensorflow as pydiffvg
import time
from enum import IntEnum
import warnings

print_timing = False
__EMPTY_TENSOR = tf.constant([])

def is_empty_tensor(tensor):
    return  tf.equal(tf.size(tensor), 0)

def set_print_timing(val):
    global print_timing
    print_timing=val

class OutputType(IntEnum):
    color = 1
    sdf = 2

class ShapeType:
    __shapetypes = [
        diffvg.ShapeType.circle,
        diffvg.ShapeType.ellipse,
        diffvg.ShapeType.path,
        diffvg.ShapeType.rect
    ]

    @staticmethod
    def asTensor(type):
        for i in range(len(ShapeType.__shapetypes)):
            if ShapeType.__shapetypes[i] == type:
                return tf.constant(i)

    @staticmethod
    def asShapeType(index: tf.Tensor):
        if is_empty_tensor(index):
            return None
        try:
            type = ShapeType.__shapetypes[index]
        except IndexError:
            print(f'{index} is out of range: [0, {len(ShapeType.__shapetypes)})')
            import sys
            sys.exit()
        else:
            return type

class ColorType:
    __colortypes = [
        diffvg.ColorType.constant,
        diffvg.ColorType.linear_gradient,
        diffvg.ColorType.radial_gradient
    ]

    @staticmethod
    def asTensor(type):
        for i in range(len(ColorType.__colortypes)):
            if ColorType.__colortypes[i] == type:
                return tf.constant(i)

    @staticmethod
    def asColorType(index: tf.Tensor):
        if is_empty_tensor(index):
            return None
        try:
            type = ColorType.__colortypes[index]
        except IndexError:
            print(f'{index} is out of range: [0, {len(ColorType.__colortypes)})')
            import sys
            sys.exit()
        else:
            return type

class FilterType:
    __filtertypes = [
        diffvg.FilterType.box,
        diffvg.FilterType.tent,
        diffvg.FilterType.hann
    ]

    @staticmethod
    def asTensor(type):
        for i in range(len(FilterType.__filtertypes)):
            if FilterType.__filtertypes[i] == type:
                return tf.constant(i)    

    @staticmethod
    def asFilterType(index: tf.Tensor):
        if is_empty_tensor(index):
            return None
        try:
            type = FilterType.__filtertypes[index]
        except IndexError:
            print(f'{index} is out of range: [0, {len(FilterType.__filtertypes)})')
            import sys
            sys.exit()
        else:
            return type

def serialize_scene(canvas_width,
                    canvas_height,
                    shapes,
                    shape_groups,
                    filter = pydiffvg.PixelFilter(type = diffvg.FilterType.box,
                                                  radius = tf.constant(0.5)),
                    output_type = OutputType.color,
                    use_prefiltering = False):
    """
        Given a list of shapes, convert them to a linear list of argument,
        so that we can use it in TF.
    """
    with tf.device('/device:cpu:' + str(pydiffvg.get_cpu_device_id())):
        num_shapes = len(shapes)
        num_shape_groups = len(shape_groups)
        args = []
        args.append(tf.constant(canvas_width))
        args.append(tf.constant(canvas_height))
        args.append(tf.constant(num_shapes))
        args.append(tf.constant(num_shape_groups))
        args.append(tf.constant(output_type))
        args.append(tf.constant(use_prefiltering))
        for shape in shapes:
            if isinstance(shape, pydiffvg.Circle):
                args.append(ShapeType.asTensor(diffvg.ShapeType.circle))
                args.append(tf.identity(shape.radius))
                args.append(tf.identity(shape.center))
            elif isinstance(shape, pydiffvg.Ellipse):
                args.append(ShapeType.asTensor(diffvg.ShapeType.ellipse))
                args.append(tf.identity(shape.radius))
                args.append(tf.identity(shape.center))
            elif isinstance(shape, pydiffvg.Path):
                assert(shape.points.shape[1] == 2)
                args.append(ShapeType.asTensor(diffvg.ShapeType.path))
                args.append(tf.identity(shape.num_control_points))
                args.append(tf.identity(shape.points))
                args.append(tf.constant(shape.is_closed))
                args.append(tf.constant(shape.use_distance_approx))
            elif isinstance(shape, pydiffvg.Polygon):
                assert(shape.points.shape[1] == 2)
                args.append(ShapeType.asTensor(diffvg.ShapeType.path))
                if shape.is_closed:
                    args.append(tf.zeros(shape.points.shape[0], dtype = tf.int32))
                else:
                    args.append(tf.zeros(shape.points.shape[0] - 1, dtype = tf.int32))
                args.append(tf.identity(shape.points))
                args.append(tf.constant(shape.is_closed))
            elif isinstance(shape, pydiffvg.Rect):
                args.append(ShapeType.asTensor(diffvg.ShapeType.rect))
                args.append(tf.identity(shape.p_min))
                args.append(tf.identity(shape.p_max))
            else:
                assert(False)
            args.append(tf.identity(shape.stroke_width))

        for shape_group in shape_groups:
            args.append(tf.identity(shape_group.shape_ids))
            # Fill color
            if shape_group.fill_color is None:
                args.append(__EMPTY_TENSOR)
            elif tf.is_tensor(shape_group.fill_color):
                args.append(ColorType.asTensor(diffvg.ColorType.constant))
                args.append(tf.identity(shape_group.fill_color))
            elif isinstance(shape_group.fill_color, pydiffvg.LinearGradient):
                args.append(ColorType.asTensor(diffvg.ColorType.linear_gradient))
                args.append(tf.identity(shape_group.fill_color.begin))
                args.append(tf.identity(shape_group.fill_color.end))
                args.append(tf.identity(shape_group.fill_color.offsets))
                args.append(tf.identity(shape_group.fill_color.stop_colors))
            elif isinstance(shape_group.fill_color, pydiffvg.RadialGradient):
                args.append(ColorType.asTensor(diffvg.ColorType.radial_gradient))
                args.append(tf.identity(shape_group.fill_color.center))
                args.append(tf.identity(shape_group.fill_color.radius))
                args.append(tf.identity(shape_group.fill_color.offsets))
                args.append(tf.identity(shape_group.fill_color.stop_colors))

            if shape_group.fill_color is not None:
                # go through the underlying shapes and check if they are all closed
                for shape_id in shape_group.shape_ids:
                    if isinstance(shapes[shape_id], pydiffvg.Path):
                        if not shapes[shape_id].is_closed:
                            warnings.warn("Detected non-closed paths with fill color. This might causes unexpected results.", Warning)

            # Stroke color
            if shape_group.stroke_color is None:
                args.append(__EMPTY_TENSOR)
            elif tf.is_tensor(shape_group.stroke_color):
                args.append(tf.constant(0))
                args.append(tf.identity(shape_group.stroke_color))
            elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient):
                args.append(ColorType.asTensor(diffvg.ColorType.linear_gradient))
                args.append(tf.identity(shape_group.stroke_color.begin))
                args.append(tf.identity(shape_group.stroke_color.end))
                args.append(tf.identity(shape_group.stroke_color.offsets))
                args.append(tf.identity(shape_group.stroke_color.stop_colors))
            elif isinstance(shape_group.stroke_color, pydiffvg.RadialGradient):
                args.append(ColorType.asTensor(diffvg.ColorType.radial_gradient))
                args.append(tf.identity(shape_group.stroke_color.center))
                args.append(tf.identity(shape_group.stroke_color.radius))
                args.append(tf.identity(shape_group.stroke_color.offsets))
                args.append(tf.identity(shape_group.stroke_color.stop_colors))
            args.append(tf.constant(shape_group.use_even_odd_rule))
            # Transformation
            args.append(tf.identity(shape_group.shape_to_canvas))
        args.append(FilterType.asTensor(filter.type))
        args.append(tf.constant(filter.radius))
    return args

class Context: pass

def forward(width,
            height,
            num_samples_x,
            num_samples_y,
            seed,
            *args):
    """
        Forward rendering pass: given a serialized scene and output an image.
    """
    # Unpack arguments
    with tf.device('/device:cpu:' + str(pydiffvg.get_cpu_device_id())):
        current_index = 0
        canvas_width = int(args[current_index])
        current_index += 1
        canvas_height = int(args[current_index])
        current_index += 1
        num_shapes = int(args[current_index])
        current_index += 1
        num_shape_groups = int(args[current_index])
        current_index += 1
        output_type = OutputType(int(args[current_index]))
        current_index += 1
        use_prefiltering = bool(args[current_index])
        current_index += 1
        shapes = []
        shape_groups = []
        shape_contents = [] # Important to avoid GC deleting the shapes
        color_contents = [] # Same as above
        for shape_id in range(num_shapes):
            shape_type = ShapeType.asShapeType(args[current_index])
            current_index += 1
            if shape_type == diffvg.ShapeType.circle:
                radius = args[current_index]
                current_index += 1
                center = args[current_index]
                current_index += 1
                shape = diffvg.Circle(float(radius),
                                      diffvg.Vector2f(float(center[0]), float(center[1])))
            elif shape_type == diffvg.ShapeType.ellipse:
                radius = args[current_index]
                current_index += 1
                center = args[current_index]
                current_index += 1
                shape = diffvg.Ellipse(diffvg.Vector2f(float(radius[0]), float(radius[1])),
                                       diffvg.Vector2f(float(center[0]), float(center[1])))
            elif shape_type == diffvg.ShapeType.path:
                num_control_points = args[current_index]
                current_index += 1
                points = args[current_index]
                current_index += 1
                is_closed = args[current_index]
                current_index += 1
                use_distance_approx = args[current_index]
                current_index += 1
                shape = diffvg.Path(diffvg.int_ptr(pydiffvg.data_ptr(num_control_points)),
                                    diffvg.float_ptr(pydiffvg.data_ptr(points)),
                                    diffvg.float_ptr(0), # thickness
                                    num_control_points.shape[0],
                                    points.shape[0],
                                    is_closed,
                                    use_distance_approx)
            elif shape_type == diffvg.ShapeType.rect:
                p_min = args[current_index]
                current_index += 1
                p_max = args[current_index]
                current_index += 1
                shape = diffvg.Rect(diffvg.Vector2f(float(p_min[0]), float(p_min[1])),
                                    diffvg.Vector2f(float(p_max[0]), float(p_max[1])))
            else:
                assert(False)
            stroke_width = args[current_index]
            current_index += 1
            shapes.append(diffvg.Shape(\
                shape_type, shape.get_ptr(), float(stroke_width)))
            shape_contents.append(shape)

        for shape_group_id in range(num_shape_groups):
            shape_ids = args[current_index]
            current_index += 1
            fill_color_type = ColorType.asColorType(args[current_index])
            current_index += 1
            if fill_color_type == diffvg.ColorType.constant:
                color = args[current_index]
                current_index += 1
                fill_color = diffvg.Constant(\
                    diffvg.Vector4f(color[0], color[1], color[2], color[3]))
            elif fill_color_type == diffvg.ColorType.linear_gradient:
                beg = args[current_index]
                current_index += 1
                end = args[current_index]
                current_index += 1
                offsets = args[current_index]
                current_index += 1
                stop_colors = args[current_index]
                current_index += 1
                assert(offsets.shape[0] == stop_colors.shape[0])
                fill_color = diffvg.LinearGradient(diffvg.Vector2f(float(beg[0]), float(beg[1])),
                                                   diffvg.Vector2f(float(end[0]), float(end[1])),
                                                   offsets.shape[0],
                                                   diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                                                   diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
            elif fill_color_type == diffvg.ColorType.radial_gradient:
                center = args[current_index]
                current_index += 1
                radius = args[current_index]
                current_index += 1
                offsets = args[current_index]
                current_index += 1
                stop_colors = args[current_index]
                current_index += 1
                assert(offsets.shape[0] == stop_colors.shape[0])
                fill_color = diffvg.RadialGradient(diffvg.Vector2f(float(center[0]), float(center[1])),
                                                   diffvg.Vector2f(float(radius[0]), float(radius[1])),
                                                   offsets.shape[0],
                                                   diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                                                   diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
            elif fill_color_type is None:
                fill_color = None
            else:
                assert(False)

            stroke_color_type = ColorType.asColorType(args[current_index])
            current_index += 1
            if stroke_color_type == diffvg.ColorType.constant:
                color = args[current_index]
                current_index += 1
                stroke_color = diffvg.Constant(\
                    diffvg.Vector4f(float(color[0]),
                                    float(color[1]),
                                    float(color[2]),
                                    float(color[3])))
            elif stroke_color_type == diffvg.ColorType.linear_gradient:
                beg = args[current_index]
                current_index += 1
                end = args[current_index]
                current_index += 1
                offsets = args[current_index]
                current_index += 1
                stop_colors = args[current_index]
                current_index += 1
                assert(offsets.shape[0] == stop_colors.shape[0])
                stroke_color = diffvg.LinearGradient(\
                    diffvg.Vector2f(float(beg[0]), float(beg[1])),
                    diffvg.Vector2f(float(end[0]), float(end[1])),
                    offsets.shape[0],
                    diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                    diffvg.float_ptr(stop_colors.data_ptr()))
            elif stroke_color_type == diffvg.ColorType.radial_gradient:
                center = args[current_index]
                current_index += 1
                radius = args[current_index]
                current_index += 1
                offsets = args[current_index]
                current_index += 1
                stop_colors = args[current_index]
                current_index += 1
                assert(offsets.shape[0] == stop_colors.shape[0])
                stroke_color = diffvg.RadialGradient(\
                    diffvg.Vector2f(float(center[0]), float(center[1])),
                    diffvg.Vector2f(float(radius[0]), float(radius[1])),
                    offsets.shape[0],
                    diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                    diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
            elif stroke_color_type is None:
                stroke_color = None
            else:
                assert(False)
            use_even_odd_rule = bool(args[current_index])
            current_index += 1
            shape_to_canvas = args[current_index]
            current_index += 1

            if fill_color is not None:
                color_contents.append(fill_color)
            if stroke_color is not None:
                color_contents.append(stroke_color)
            shape_groups.append(diffvg.ShapeGroup(\
                diffvg.int_ptr(pydiffvg.data_ptr(shape_ids)),
                shape_ids.shape[0],
                diffvg.ColorType.constant if fill_color_type is None else fill_color_type,
                diffvg.void_ptr(0) if fill_color is None else fill_color.get_ptr(),
                diffvg.ColorType.constant if stroke_color_type is None else stroke_color_type,
                diffvg.void_ptr(0) if stroke_color is None else stroke_color.get_ptr(),
                use_even_odd_rule,
                diffvg.float_ptr(pydiffvg.data_ptr(shape_to_canvas))))

        filter_type = FilterType.asFilterType(args[current_index])
        current_index += 1
        filter_radius = args[current_index]
        current_index += 1
        filt = diffvg.Filter(filter_type, filter_radius)

    device_name = pydiffvg.get_device_name()
    device_spec = tf.DeviceSpec.from_string(device_name)
    use_gpu = device_spec.device_type == 'GPU'
    gpu_index = device_spec.device_index if device_spec.device_index is not None else 0

    start = time.time()
    scene = diffvg.Scene(canvas_width,
                         canvas_height,
                         shapes,
                         shape_groups,
                         filt,
                         use_gpu,
                         gpu_index)
    time_elapsed = time.time() - start
    global print_timing
    if print_timing:
        print('Scene construction, time: %.5f s' % time_elapsed)

    with tf.device(device_name):
        if output_type == OutputType.color:
            rendered_image = tf.zeros((int(height), int(width), 4), dtype = tf.float32)
        else:
            assert(output_type == OutputType.sdf)
            rendered_image = tf.zeros((int(height), int(width), 1), dtype = tf.float32)

        start = time.time()
        diffvg.render(scene,
                      diffvg.float_ptr(0), # background image
                      diffvg.float_ptr(pydiffvg.data_ptr(rendered_image) if output_type == OutputType.color else 0),
                      diffvg.float_ptr(pydiffvg.data_ptr(rendered_image) if output_type == OutputType.sdf else 0),
                      width,
                      height,
                      int(num_samples_x),
                      int(num_samples_y),
                      seed,
                      diffvg.float_ptr(0), # d_background_image
                      diffvg.float_ptr(0), # d_render_image
                      diffvg.float_ptr(0), # d_render_sdf
                      diffvg.float_ptr(0), # d_translation
                      use_prefiltering,
                      diffvg.float_ptr(0), # eval_positions
                      0 ) # num_eval_positions (automatically set to entire raster)
        time_elapsed = time.time() - start
        if print_timing:
            print('Forward pass, time: %.5f s' % time_elapsed)

    ctx = Context()
    ctx.scene = scene
    ctx.shape_contents = shape_contents
    ctx.color_contents = color_contents
    ctx.filter = filt
    ctx.width = width
    ctx.height = height
    ctx.num_samples_x = num_samples_x
    ctx.num_samples_y = num_samples_y
    ctx.seed = seed
    ctx.output_type = output_type
    ctx.use_prefiltering = use_prefiltering
    return rendered_image, ctx

@tf.custom_gradient
def render(*x):
    """
        The main TensorFlow interface of C++ diffvg.
    """
    assert(tf.executing_eagerly())
    if pydiffvg.get_use_gpu() and os.environ.get('TF_FORCE_GPU_ALLOW_GROWTH') != 'true':
        print('******************** WARNING ********************')
        print('Tensorflow by default allocates all GPU memory,')
        print('causing huge amount of page faults when rendering.')
        print('Please set the environment variable TF_FORCE_GPU_ALLOW_GROWTH to true,')
        print('so that Tensorflow allocates memory on demand.')
        print('*************************************************')

    width = x[0]
    height = x[1]
    num_samples_x = x[2]
    num_samples_y = x[3]
    seed = x[4]
    args = x[5:]
    img, ctx = forward(width, height, num_samples_x, num_samples_y, seed, *args)

    def backward(grad_img):
        scene = ctx.scene
        width = ctx.width
        height = ctx.height
        num_samples_x = ctx.num_samples_x
        num_samples_y = ctx.num_samples_y
        seed = ctx.seed
        output_type = ctx.output_type
        use_prefiltering = ctx.use_prefiltering

        start = time.time()
        with tf.device(pydiffvg.get_device_name()):
            diffvg.render(scene,
                          diffvg.float_ptr(0), # background_image
                          diffvg.float_ptr(0), # render_image
                          diffvg.float_ptr(0), # render_sdf
                          width,
                          height,
                          num_samples_x,
                          num_samples_y,
                          seed,
                          diffvg.float_ptr(0), # d_background_image
                          diffvg.float_ptr(pydiffvg.data_ptr(grad_img) if output_type == OutputType.color else 0),
                          diffvg.float_ptr(pydiffvg.data_ptr(grad_img) if output_type == OutputType.sdf else 0),
                          diffvg.float_ptr(0), # d_translation
                          use_prefiltering,
                          diffvg.float_ptr(0), # eval_positions
                          0 ) # num_eval_positions (automatically set to entire raster))
        time_elapsed = time.time() - start
        global print_timing
        if print_timing:
            print('Backward pass, time: %.5f s' % time_elapsed)

        with tf.device('/device:cpu:' + str(pydiffvg.get_cpu_device_id())):
            d_args = []
            d_args.append(None) # width
            d_args.append(None) # height
            d_args.append(None) # num_samples_x
            d_args.append(None) # num_samples_y
            d_args.append(None) # seed
            d_args.append(None) # canvas_width
            d_args.append(None) # canvas_height
            d_args.append(None) # num_shapes
            d_args.append(None) # num_shape_groups
            d_args.append(None) # output_type
            d_args.append(None) # use_prefiltering
            for shape_id in range(scene.num_shapes):
                d_args.append(None) # type
                d_shape = scene.get_d_shape(shape_id)
                if d_shape.type == diffvg.ShapeType.circle:
                    d_circle = d_shape.as_circle()
                    radius = tf.constant(d_circle.radius)
                    d_args.append(radius)
                    c = d_circle.center
                    c = tf.constant((c.x, c.y))
                    d_args.append(c)
                elif d_shape.type == diffvg.ShapeType.ellipse:
                    d_ellipse = d_shape.as_ellipse()
                    r = d_ellipse.radius
                    r = tf.constant((d_ellipse.radius.x, d_ellipse.radius.y))
                    d_args.append(r)
                    c = d_ellipse.center
                    c = tf.constant((c.x, c.y))
                    d_args.append(c)
                elif d_shape.type == diffvg.ShapeType.path:
                    d_path = d_shape.as_path()
                    points = tf.zeros((d_path.num_points, 2), dtype=tf.float32)
                    d_path.copy_to(diffvg.float_ptr(pydiffvg.data_ptr(points)),diffvg.float_ptr(0))
                    d_args.append(None) # num_control_points
                    d_args.append(points)
                    d_args.append(None) # is_closed
                    d_args.append(None) # use_distance_approx
                elif d_shape.type == diffvg.ShapeType.rect:
                    d_rect = d_shape.as_rect()
                    p_min = tf.constant((d_rect.p_min.x, d_rect.p_min.y))
                    p_max = tf.constant((d_rect.p_max.x, d_rect.p_max.y))
                    d_args.append(p_min)
                    d_args.append(p_max)
                else:
                    assert(False)
                w = tf.constant((d_shape.stroke_width))
                d_args.append(w)

            for group_id in range(scene.num_shape_groups):
                d_shape_group = scene.get_d_shape_group(group_id)
                d_args.append(None) # shape_ids
                d_args.append(None) # fill_color_type
                if d_shape_group.has_fill_color():
                    if d_shape_group.fill_color_type == diffvg.ColorType.constant:
                        d_constant = d_shape_group.fill_color_as_constant()
                        c = d_constant.color
                        d_args.append(tf.constant((c.x, c.y, c.z, c.w)))
                    elif d_shape_group.fill_color_type == diffvg.ColorType.linear_gradient:
                        d_linear_gradient = d_shape_group.fill_color_as_linear_gradient()
                        beg = d_linear_gradient.begin
                        d_args.append(tf.constant((beg.x, beg.y)))
                        end = d_linear_gradient.end
                        d_args.append(tf.constant((end.x, end.y)))
                        offsets = tf.zeros((d_linear_gradient.num_stops), dtype=tf.float32)
                        stop_colors = tf.zeros((d_linear_gradient.num_stops, 4), dtype=tf.float32)
                        # HACK: tensorflow's eager mode uses a cache to store scalar
                        #       constants to avoid memory copy. If we pass scalar tensors
                        #       into the C++ code and modify them, we would corrupt the
                        #       cache, causing incorrect result in future scalar constant
                        #       creations. Thus we force tensorflow to copy by plusing a zero.
                        # (also see https://github.com/tensorflow/tensorflow/issues/11186
                        #  for more discussion regarding copying tensors)
                        if offsets.shape.num_elements() == 1:
                            offsets = offsets + 0
                        d_linear_gradient.copy_to(\
                            diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                            diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
                        d_args.append(offsets)
                        d_args.append(stop_colors)
                    elif d_shape_group.fill_color_type == diffvg.ColorType.radial_gradient:
                        d_radial_gradient = d_shape_group.fill_color_as_radial_gradient()
                        center = d_radial_gradient.center
                        d_args.append(tf.constant((center.x, center.y)))
                        radius = d_radial_gradient.radius
                        d_args.append(tf.constant((radius.x, radius.y)))
                        offsets = tf.zeros((d_radial_gradient.num_stops))
                        if offsets.shape.num_elements() == 1:
                            offsets = offsets + 0
                        stop_colors = tf.zeros((d_radial_gradient.num_stops, 4))
                        d_radial_gradient.copy_to(\
                            diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                            diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
                        d_args.append(offsets)
                        d_args.append(stop_colors)
                    else:
                        assert(False)
                d_args.append(None) # stroke_color_type
                if d_shape_group.has_stroke_color():
                    if d_shape_group.stroke_color_type == diffvg.ColorType.constant:
                        d_constant = d_shape_group.stroke_color_as_constant()
                        c = d_constant.color
                        d_args.append(tf.constant((c.x, c.y, c.z, c.w)))
                    elif d_shape_group.stroke_color_type == diffvg.ColorType.linear_gradient:
                        d_linear_gradient = d_shape_group.stroke_color_as_linear_gradient()
                        beg = d_linear_gradient.begin
                        d_args.append(tf.constant((beg.x, beg.y)))
                        end = d_linear_gradient.end
                        d_args.append(tf.constant((end.x, end.y)))
                        offsets = tf.zeros((d_linear_gradient.num_stops))
                        stop_colors = tf.zeros((d_linear_gradient.num_stops, 4))
                        if offsets.shape.num_elements() == 1:
                            offsets = offsets + 0
                        d_linear_gradient.copy_to(\
                            diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                            diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
                        d_args.append(offsets)
                        d_args.append(stop_colors)
                    elif d_shape_group.fill_color_type == diffvg.ColorType.radial_gradient:
                        d_radial_gradient = d_shape_group.stroke_color_as_radial_gradient()
                        center = d_radial_gradient.center
                        d_args.append(tf.constant((center.x, center.y)))
                        radius = d_radial_gradient.radius
                        d_args.append(tf.constant((radius.x, radius.y)))
                        offsets = tf.zeros((d_radial_gradient.num_stops))
                        stop_colors = tf.zeros((d_radial_gradient.num_stops, 4))
                        if offsets.shape.num_elements() == 1:
                            offsets = offsets + 0
                        d_radial_gradient.copy_to(\
                            diffvg.float_ptr(pydiffvg.data_ptr(offsets)),
                            diffvg.float_ptr(pydiffvg.data_ptr(stop_colors)))
                        d_args.append(offsets)
                        d_args.append(stop_colors)
                    else:
                        assert(False)
                d_args.append(None) # use_even_odd_rule
                d_shape_to_canvas = tf.zeros((3, 3), dtype = tf.float32)
                d_shape_group.copy_to(diffvg.float_ptr(pydiffvg.data_ptr(d_shape_to_canvas)))
                d_args.append(d_shape_to_canvas)
            d_args.append(None) # filter_type
            d_args.append(tf.constant(scene.get_d_filter_radius()))

        return d_args

    return img, backward