File size: 22,642 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import torch
import xml.etree.ElementTree as etree
import numpy as np
import diffvg
import os
import pydiffvg
import svgpathtools
import svgpathtools.parser
import re
import warnings
import cssutils
import logging
import matplotlib.colors 
cssutils.log.setLevel(logging.ERROR)

def remove_namespaces(s):
    """
        {...} ... -> ...
    """
    return re.sub('{.*}', '', s)

def parse_style(s, defs):
    style_dict = {}
    for e in s.split(';'):
        key_value = e.split(':')
        if len(key_value) == 2:
            key = key_value[0].strip()
            value = key_value[1].strip()
            if key == 'fill' or key == 'stroke':
                # Special case: convert colors into tensor in definitions so
                # that different shapes can share the same color
                value = parse_color(value, defs)
            style_dict[key] = value
    return style_dict

def parse_hex(s):
    """
        Hex to tuple
    """
    s = s.lstrip('#')
    if len(s) == 3:
        s = s[0] + s[0] + s[1] + s[1] + s[2] + s[2]
    rgb = tuple(int(s[i:i+2], 16) for i in (0, 2, 4))
    # sRGB to RGB
    # return torch.pow(torch.tensor([rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0]), 2.2)
    return torch.pow(torch.tensor([rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0]), 1.0)

def parse_int(s):
    """
        trim alphabets
    """
    return int(float(''.join(i for i in s if (not i.isalpha()))))

def parse_color(s, defs):
    if s is None:
        return None
    if isinstance(s, torch.Tensor):
        return s
    s = s.lstrip(' ')
    color = torch.tensor([0.0, 0.0, 0.0, 1.0])
    if s[0] == '#':
        color[:3] = parse_hex(s)
    elif s[:3] == 'url':
        # url(#id)
        color = defs[s[4:-1].lstrip('#')]
    elif s == 'none':
        color = None
    elif s[:4] == 'rgb(':
        rgb = s[4:-1].split(',')
        color = torch.tensor([int(rgb[0]) / 255.0, int(rgb[1]) / 255.0, int(rgb[2]) / 255.0, 1.0])
    elif s == 'none':
        return None
    else:
        try : 
            rgba = matplotlib.colors.to_rgba(s)
            color = torch.tensor(rgba)
        except ValueError : 
            warnings.warn('Unknown color command ' + s)
    return color

# https://github.com/mathandy/svgpathtools/blob/7ebc56a831357379ff22216bec07e2c12e8c5bc6/svgpathtools/parser.py
def _parse_transform_substr(transform_substr):
    type_str, value_str = transform_substr.split('(')
    value_str = value_str.replace(',', ' ')
    values = list(map(float, filter(None, value_str.split(' '))))

    transform = np.identity(3)
    if 'matrix' in type_str:
        transform[0:2, 0:3] = np.array([values[0:6:2], values[1:6:2]])
    elif 'translate' in transform_substr:
        transform[0, 2] = values[0]
        if len(values) > 1:
            transform[1, 2] = values[1]
    elif 'scale' in transform_substr:
        x_scale = values[0]
        y_scale = values[1] if (len(values) > 1) else x_scale
        transform[0, 0] = x_scale
        transform[1, 1] = y_scale
    elif 'rotate' in transform_substr:
        angle = values[0] * np.pi / 180.0
        if len(values) == 3:
            offset = values[1:3]
        else:
            offset = (0, 0)
        tf_offset = np.identity(3)
        tf_offset[0:2, 2:3] = np.array([[offset[0]], [offset[1]]])
        tf_rotate = np.identity(3)
        tf_rotate[0:2, 0:2] = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
        tf_offset_neg = np.identity(3)
        tf_offset_neg[0:2, 2:3] = np.array([[-offset[0]], [-offset[1]]])

        transform = tf_offset.dot(tf_rotate).dot(tf_offset_neg)
    elif 'skewX' in transform_substr:
        transform[0, 1] = np.tan(values[0] * np.pi / 180.0)
    elif 'skewY' in transform_substr:
        transform[1, 0] = np.tan(values[0] * np.pi / 180.0)
    else:
        # Return an identity matrix if the type of transform is unknown, and warn the user
        warnings.warn('Unknown SVG transform type: {0}'.format(type_str))
    return transform

def parse_transform(transform_str):
    """
        Converts a valid SVG transformation string into a 3x3 matrix.
        If the string is empty or null, this returns a 3x3 identity matrix
    """
    if not transform_str:
        return np.identity(3)
    elif not isinstance(transform_str, str):
        raise TypeError('Must provide a string to parse')

    total_transform = np.identity(3)
    transform_substrs = transform_str.split(')')[:-1]  # Skip the last element, because it should be empty
    for substr in transform_substrs:
        total_transform = total_transform.dot(_parse_transform_substr(substr))

    return torch.from_numpy(total_transform).type(torch.float32)

def parse_linear_gradient(node, transform, defs):
    begin = torch.tensor([0.0, 0.0])
    end = torch.tensor([0.0, 0.0])
    offsets = []
    stop_colors = []
    # Inherit from parent
    for key in node.attrib:
        if remove_namespaces(key) == 'href':
            value = node.attrib[key]
            parent = defs[value.lstrip('#')]
            begin = parent.begin
            end = parent.end
            offsets = parent.offsets
            stop_colors = parent.stop_colors

    for attrib in node.attrib:
        attrib = remove_namespaces(attrib)
        if attrib == 'x1':
            begin[0] = float(node.attrib['x1'])
        elif attrib == 'y1':
            begin[1] = float(node.attrib['y1'])
        elif attrib == 'x2':
            end[0] = float(node.attrib['x2'])
        elif attrib == 'y2':
            end[1] = float(node.attrib['y2'])
        elif attrib == 'gradientTransform':
            transform = transform @ parse_transform(node.attrib['gradientTransform'])

    begin = transform @ torch.cat((begin, torch.ones([1])))
    begin = begin / begin[2]
    begin = begin[:2]
    end = transform @ torch.cat((end, torch.ones([1])))
    end = end / end[2]
    end = end[:2]

    for child in node:
        tag = remove_namespaces(child.tag)
        if tag == 'stop':
            offset = float(child.attrib['offset'])
            color = [0.0, 0.0, 0.0, 1.0]
            if 'stop-color' in child.attrib:
                c = parse_color(child.attrib['stop-color'], defs)
                color[:3] = [c[0], c[1], c[2]]
            if 'stop-opacity' in child.attrib:
                color[3] = float(child.attrib['stop-opacity'])
            if 'style' in child.attrib:
                style = parse_style(child.attrib['style'], defs)
                if 'stop-color' in style:
                    c = parse_color(style['stop-color'], defs)
                    color[:3] = [c[0], c[1], c[2]]
                if 'stop-opacity' in style:
                    color[3] = float(style['stop-opacity'])
            offsets.append(offset)
            stop_colors.append(color)
    if isinstance(offsets, list):
        offsets = torch.tensor(offsets)
    if isinstance(stop_colors, list):
        stop_colors = torch.tensor(stop_colors)

    return pydiffvg.LinearGradient(begin, end, offsets, stop_colors)


def parse_radial_gradient(node, transform, defs):
    begin = torch.tensor([0.0, 0.0])
    end = torch.tensor([0.0, 0.0])
    center = torch.tensor([0.0, 0.0])
    radius = torch.tensor([0.0, 0.0])
    offsets = []
    stop_colors = []
    # Inherit from parent
    for key in node.attrib:
        if remove_namespaces(key) == 'href':
            value = node.attrib[key]
            parent = defs[value.lstrip('#')]
            begin = parent.begin
            end = parent.end
            offsets = parent.offsets
            stop_colors = parent.stop_colors

    for attrib in node.attrib:
        attrib = remove_namespaces(attrib)
        if attrib == 'cx':
            center[0] = float(node.attrib['cx'])
        elif attrib == 'cy':
            center[1] = float(node.attrib['cy'])
        elif attrib == 'fx':
            radius[0] = float(node.attrib['fx'])
        elif attrib == 'fy':
            radius[1] = float(node.attrib['fy'])
        elif attrib == 'fr':
            radius[0] = float(node.attrib['fr'])
            radius[1] = float(node.attrib['fr'])
        elif attrib == 'gradientTransform':
            transform = transform @ parse_transform(node.attrib['gradientTransform'])

    # TODO: this is incorrect
    center = transform @ torch.cat((center, torch.ones([1])))
    center = center / center[2]
    center = center[:2]

    for child in node:
        tag = remove_namespaces(child.tag)
        if tag == 'stop':
            offset = float(child.attrib['offset'])
            color = [0.0, 0.0, 0.0, 1.0]
            if 'stop-color' in child.attrib:
                c = parse_color(child.attrib['stop-color'], defs)
                color[:3] = [c[0], c[1], c[2]]
            if 'stop-opacity' in child.attrib:
                color[3] = float(child.attrib['stop-opacity'])
            if 'style' in child.attrib:
                style = parse_style(child.attrib['style'], defs)
                if 'stop-color' in style:
                    c = parse_color(style['stop-color'], defs)
                    color[:3] = [c[0], c[1], c[2]]
                if 'stop-opacity' in style:
                    color[3] = float(style['stop-opacity'])
            offsets.append(offset)
            stop_colors.append(color)
    if isinstance(offsets, list):
        offsets = torch.tensor(offsets)
    if isinstance(stop_colors, list):
        stop_colors = torch.tensor(stop_colors)

    return pydiffvg.RadialGradient(begin, end, offsets, stop_colors)

def parse_stylesheet(node, transform, defs):
    # collect CSS classes
    sheet = cssutils.parseString(node.text)
    for rule in sheet:
        if hasattr(rule, 'selectorText') and hasattr(rule, 'style'):
            name = rule.selectorText
            if len(name) >= 2 and name[0] == '.':
                defs[name[1:]] = parse_style(rule.style.getCssText(), defs)
    return defs

def parse_defs(node, transform, defs):
    for child in node:
        tag = remove_namespaces(child.tag)
        if tag == 'linearGradient':
            if 'id' in child.attrib:
                defs[child.attrib['id']] = parse_linear_gradient(child, transform, defs)
        elif tag == 'radialGradient':
            if 'id' in child.attrib:
                defs[child.attrib['id']] = parse_radial_gradient(child, transform, defs)
        elif tag == 'style':
            defs = parse_stylesheet(child, transform, defs)
    return defs

def parse_common_attrib(node, transform, fill_color, defs):
    attribs = {}
    if 'class' in node.attrib:
        attribs.update(defs[node.attrib['class']])
    attribs.update(node.attrib)

    name = ''
    if 'id' in node.attrib:
        name = node.attrib['id']

    stroke_color = None
    stroke_width = torch.tensor(0.5)
    use_even_odd_rule = False

    new_transform = transform
    if 'transform' in attribs:
        new_transform = transform @ parse_transform(attribs['transform'])
    if 'fill' in attribs:
        fill_color = parse_color(attribs['fill'], defs)
    fill_opacity = 1.0
    if 'fill-opacity' in attribs:
        fill_opacity *= float(attribs['fill-opacity'])
    if 'opacity' in attribs:
        fill_opacity *= float(attribs['opacity'])
    # Ignore opacity if the color is a gradient
    if isinstance(fill_color, torch.Tensor):
        fill_color[3] = fill_opacity

    if 'fill-rule' in attribs:
        if attribs['fill-rule'] == "evenodd":
            use_even_odd_rule = True
        elif attribs['fill-rule'] == "nonzero":
            use_even_odd_rule = False
        else:
            warnings.warn('Unknown fill-rule: {}'.format(attribs['fill-rule']))

    if 'stroke' in attribs:
        stroke_color = parse_color(attribs['stroke'], defs)

    if 'stroke-width' in attribs:
        stroke_width = attribs['stroke-width']
        if stroke_width[-2:] == 'px':
            stroke_width = stroke_width[:-2]
        stroke_width = torch.tensor(float(stroke_width) / 2.0)

    if 'style' in attribs:
        style = parse_style(attribs['style'], defs)
        if 'fill' in style:
            fill_color = parse_color(style['fill'], defs)
        fill_opacity = 1.0
        if 'fill-opacity' in style:
            fill_opacity *= float(style['fill-opacity'])
        if 'opacity' in style:
            fill_opacity *= float(style['opacity'])
        if 'fill-rule' in style:
            if style['fill-rule'] == "evenodd":
                use_even_odd_rule = True
            elif style['fill-rule'] == "nonzero":
                use_even_odd_rule = False
            else:
                warnings.warn('Unknown fill-rule: {}'.format(style['fill-rule']))
        # Ignore opacity if the color is a gradient
        if isinstance(fill_color, torch.Tensor):
            fill_color[3] = fill_opacity
        if 'stroke' in style:
            if style['stroke'] != 'none':
                stroke_color = parse_color(style['stroke'], defs)
                # Ignore opacity if the color is a gradient
                if isinstance(stroke_color, torch.Tensor):
                    if 'stroke-opacity' in style:
                        stroke_color[3] = float(style['stroke-opacity'])
                    if 'opacity' in style:
                        stroke_color[3] *= float(style['opacity'])
                if 'stroke-width' in style:
                    stroke_width = style['stroke-width']
                    if stroke_width[-2:] == 'px':
                        stroke_width = stroke_width[:-2]
                    stroke_width = torch.tensor(float(stroke_width) / 2.0)

        if isinstance(fill_color, pydiffvg.LinearGradient):
            fill_color.begin = new_transform @ torch.cat((fill_color.begin, torch.ones([1])))
            fill_color.begin = fill_color.begin / fill_color.begin[2]
            fill_color.begin = fill_color.begin[:2]
            fill_color.end = new_transform @ torch.cat((fill_color.end, torch.ones([1])))
            fill_color.end = fill_color.end / fill_color.end[2]
            fill_color.end = fill_color.end[:2]
        if isinstance(stroke_color, pydiffvg.LinearGradient):
            stroke_color.begin = new_transform @ torch.cat((stroke_color.begin, torch.ones([1])))
            stroke_color.begin = stroke_color.begin / stroke_color.begin[2]
            stroke_color.begin = stroke_color.begin[:2]
            stroke_color.end = new_transform @ torch.cat((stroke_color.end, torch.ones([1])))
            stroke_color.end = stroke_color.end / stroke_color.end[2]
            stroke_color.end = stroke_color.end[:2]
        if 'filter' in style:
            print('*** WARNING ***: Ignoring filter for path with id "{}"'.format(name))

    return new_transform, fill_color, stroke_color, stroke_width, use_even_odd_rule

def is_shape(tag):
    return tag == 'path' or tag == 'polygon' or tag == 'line' or tag == 'circle' or tag == 'rect'

def parse_shape(node, transform, fill_color, shapes, shape_groups, defs):
    tag = remove_namespaces(node.tag)
    new_transform, new_fill_color, stroke_color, stroke_width, use_even_odd_rule = \
        parse_common_attrib(node, transform, fill_color, defs)
    if tag == 'path':
        d = node.attrib['d']
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        force_closing = new_fill_color is not None
        paths = pydiffvg.from_svg_path(d, new_transform, force_closing)
        for idx, path in enumerate(paths):
            assert(path.points.shape[1] == 2)
            path.stroke_width = stroke_width
            path.source_id = name
            path.id = "{}-{}".format(name,idx) if len(paths)>1 else name
        prev_shapes_size = len(shapes)
        shapes = shapes + paths
        shape_ids = torch.tensor(list(range(prev_shapes_size, len(shapes))))
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            id = name))
    elif tag == 'polygon':
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        force_closing = new_fill_color is not None
        pts = node.attrib['points'].strip()
        pts = pts.split(' ')
        # import ipdb; ipdb.set_trace()
        pts = [[float(y) for y in re.split(',| ', x)] for x in pts if x]
        pts = torch.tensor(pts, dtype=torch.float32).view(-1, 2)
        polygon = pydiffvg.Polygon(pts, force_closing)
        polygon.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(polygon)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform,
            id = name))
    elif tag == 'line':
        x1 = float(node.attrib['x1'])
        y1 = float(node.attrib['y1'])
        x2 = float(node.attrib['x2'])
        y2 = float(node.attrib['y2'])
        p1 = torch.tensor([x1, y1])
        p2 = torch.tensor([x2, y2])
        points = torch.stack((p1, p2))
        line = pydiffvg.Polygon(points, False)
        line.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(line)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    elif tag == 'circle':
        radius = float(node.attrib['r'])
        cx = float(node.attrib['cx'])
        cy = float(node.attrib['cy'])
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        center = torch.tensor([cx, cy])
        circle = pydiffvg.Circle(radius = torch.tensor(radius),
                                 center = center)
        circle.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(circle)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    elif tag == 'ellipse':
        rx = float(node.attrib['rx'])
        ry = float(node.attrib['ry'])
        cx = float(node.attrib['cx'])
        cy = float(node.attrib['cy'])
        name = ''
        if 'id' in node.attrib:
            name = node.attrib['id']
        center = torch.tensor([cx, cy])
        circle = pydiffvg.Circle(radius = torch.tensor(radius),
                                 center = center)
        circle.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(circle)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    elif tag == 'rect':
        x = 0.0
        y = 0.0
        if x in node.attrib:
            x = float(node.attrib['x'])
        if y in node.attrib:
            y = float(node.attrib['y'])
        w = float(node.attrib['width'])
        h = float(node.attrib['height'])
        p_min = torch.tensor([x, y])
        p_max = torch.tensor([x + w, x + h])
        rect = pydiffvg.Rect(p_min = p_min, p_max = p_max)
        rect.stroke_width = stroke_width
        shape_ids = torch.tensor([len(shapes)])
        shapes.append(rect)
        shape_groups.append(pydiffvg.ShapeGroup(\
            shape_ids = shape_ids,
            fill_color = new_fill_color,
            stroke_color = stroke_color,
            use_even_odd_rule = use_even_odd_rule,
            shape_to_canvas = new_transform))
    return shapes, shape_groups

def parse_group(node, transform, fill_color, shapes, shape_groups, defs):
    if 'transform' in node.attrib:
        transform = transform @ parse_transform(node.attrib['transform'])
    if 'fill' in node.attrib:
        fill_color = parse_color(node.attrib['fill'], defs)
    for child in node:
        tag = remove_namespaces(child.tag)
        if is_shape(tag):
            shapes, shape_groups = parse_shape(\
                child, transform, fill_color, shapes, shape_groups, defs)
        elif tag == 'g':
            shapes, shape_groups = parse_group(\
                child, transform, fill_color, shapes, shape_groups, defs)
    return shapes, shape_groups

def parse_scene(node):
    canvas_width = -1
    canvas_height = -1
    defs = {}
    shapes = []
    shape_groups = []
    fill_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
    transform = torch.eye(3)
    if 'viewBox' in node.attrib:
        view_box_array = node.attrib['viewBox'].split()
        canvas_width = parse_int(view_box_array[2])
        canvas_height = parse_int(view_box_array[3])
    else:
        if 'width' in node.attrib:
            canvas_width = parse_int(node.attrib['width'])
        else:
            print('Warning: Can\'t find canvas width.')
        if 'height' in node.attrib:
            canvas_height = parse_int(node.attrib['height'])
        else:
            print('Warning: Can\'t find canvas height.')
    for child in node:
        tag = remove_namespaces(child.tag)
        if tag == 'defs':
            defs = parse_defs(child, transform, defs)
        elif tag == 'style':
            defs = parse_stylesheet(child, transform, defs)
        elif tag == 'linearGradient':
            if 'id' in child.attrib:
                defs[child.attrib['id']] = parse_linear_gradient(child, transform, defs)
        elif tag == 'radialGradient':
            if 'id' in child.attrib:
                defs[child.attrib['id']] = parse_radial_gradient(child, transform, defs)
        elif is_shape(tag):
            shapes, shape_groups = parse_shape(\
                child, transform, fill_color, shapes, shape_groups, defs)
        elif tag == 'g':
            shapes, shape_groups = parse_group(\
                child, transform, fill_color, shapes, shape_groups, defs)
    return canvas_width, canvas_height, shapes, shape_groups

def svg_to_scene(filename):
    """
        Load from a SVG file and convert to PyTorch tensors.
    """

    tree = etree.parse(filename)
    root = tree.getroot()
    cwd = os.getcwd()
    if (os.path.dirname(filename) != ''):
        os.chdir(os.path.dirname(filename))
    ret = parse_scene(root)
    os.chdir(cwd)
    return ret