File size: 8,280 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#pragma once

#include "diffvg.h"
#include "scene.h"
#include "shape.h"
#include "solve.h"
#include "vector.h"

DEVICE
int compute_winding_number(const Circle &circle, const Vector2f &pt) {
    const auto &c = circle.center;
    auto r = circle.radius;
    // inside the circle: return 1, outside the circle: return 0
    if (distance_squared(c, pt) < r * r) {
        return 1;
    } else {
        return 0;
    }
}

DEVICE
int compute_winding_number(const Ellipse &ellipse, const Vector2f &pt) {
    const auto &c = ellipse.center;
    const auto &r = ellipse.radius;
    // inside the ellipse: return 1, outside the ellipse: return 0
    if (square(c.x - pt.x) / square(r.x) + square(c.y - pt.y) / square(r.y) < 1) {
        return 1;
    } else {
        return 0;
    }
}

DEVICE
bool intersect(const AABB &box, const Vector2f &pt) {
    if (pt.y < box.p_min.y || pt.y > box.p_max.y) {
        return false;
    }
    if (pt.x > box.p_max.x) {
        return false;
    }
    return true;
}

DEVICE
int compute_winding_number(const Path &path, const BVHNode *bvh_nodes, const Vector2f &pt) {
    // Shoot a horizontal ray from pt to right, intersect with all curves of the path,
    // count intersection
    auto num_segments = path.num_base_points;
    constexpr auto max_bvh_size = 128;
    int bvh_stack[max_bvh_size];
    auto stack_size = 0;
    auto winding_number = 0;
    bvh_stack[stack_size++] = 2 * num_segments - 2;
    while (stack_size > 0) {
        const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]];
        if (node.child1 < 0) {
            // leaf
            auto base_point_id = node.child0;
            auto point_id = - node.child1 - 1;
            assert(base_point_id < num_segments);
            assert(point_id < path.num_points);
            if (path.num_control_points[base_point_id] == 0) {
                // Straight line
                auto i0 = point_id;
                auto i1 = (point_id + 1) % path.num_points;
                auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
                auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
                // intersect p0 + t * (p1 - p0) with pt + t' * (1, 0)
                // solve:
                // pt.x + t' = v0.x + t * (v1.x - v0.x)
                // pt.y      = v0.y + t * (v1.y - v0.y)
                if (p1.y != p0.y) {
                    auto t = (pt.y - p0.y) / (p1.y - p0.y);
                    if (t >= 0 && t <= 1) {
                        auto tp = p0.x - pt.x + t * (p1.x - p0.x);
                        if (tp >= 0) {
                            if (p1.y - p0.y > 0) {
                                winding_number += 1;
                            } else {
                                winding_number -= 1;
                            }
                        }
                    }
                }
            } else if (path.num_control_points[base_point_id] == 1) {
                // Quadratic Bezier curve
                auto i0 = point_id;
                auto i1 = point_id + 1;
                auto i2 = (point_id + 2) % path.num_points;
                auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
                auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
                auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]};
                // The curve is (1-t)^2p0 + 2(1-t)tp1 + t^2p2
                // = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0
                // intersect with pt + t' * (1 0)
                // solve
                // pt.y = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0
                float t[2];
                if (solve_quadratic(p0.y-2*p1.y+p2.y,
                                    -2*p0.y+2*p1.y,
                                    p0.y-pt.y,
                                    &t[0], &t[1])) {
                    for (int j = 0; j < 2; j++) {
                        if (t[j] >= 0 && t[j] <= 1) {
                            auto tp = (p0.x-2*p1.x+p2.x)*t[j]*t[j] +
                                      (-2*p0.x+2*p1.x)*t[j] +
                                      p0.x-pt.x;
                            if (tp >= 0) {
                                if (2*(p0.y-2*p1.y+p2.y)*t[j]+(-2*p0.y+2*p1.y) > 0) {
                                    winding_number += 1;
                                } else {
                                    winding_number -= 1;
                                }
                            }
                        }
                    }
                }
            } else if (path.num_control_points[base_point_id] == 2) {
                // Cubic Bezier curve
                auto i0 = point_id;
                auto i1 = point_id + 1;
                auto i2 = point_id + 2;
                auto i3 = (point_id + 3) % path.num_points;
                auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
                auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
                auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]};
                auto p3 = Vector2f{path.points[2 * i3], path.points[2 * i3 + 1]};
                // The curve is (1 - t)^3 p0 + 3 * (1 - t)^2 t p1 + 3 * (1 - t) t^2 p2 + t^3 p3
                // = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0
                // intersect with pt + t' * (1 0)
                // solve:
                // pt.y = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0
                double t[3];
                int num_sol = solve_cubic(double(-p0.y+3*p1.y-3*p2.y+p3.y),
                                          double(3*p0.y-6*p1.y+3*p2.y),
                                          double(-3*p0.y+3*p1.y),
                                          double(p0.y-pt.y),
                                          t);
                for (int j = 0; j < num_sol; j++) {
                    if (t[j] >= 0 && t[j] <= 1) {
                        // t' = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0 - pt.x
                        auto tp = (-p0.x+3*p1.x-3*p2.x+p3.x)*t[j]*t[j]*t[j]+
                                  (3*p0.x-6*p1.x+3*p2.x)*t[j]*t[j]+
                                  (-3*p0.x+3*p1.x)*t[j]+
                                  p0.x-pt.x;
                        if (tp > 0) {
                            if (3*(-p0.y+3*p1.y-3*p2.y+p3.y)*t[j]*t[j]+
                                2*(3*p0.y-6*p1.y+3*p2.y)*t[j]+
                                (-3*p0.y+3*p1.y) > 0) {
                                winding_number += 1;
                            } else {
                                winding_number -= 1;
                            }
                        }
                    }
                }
            } else {
                assert(false);
            }
        } else {
            assert(node.child0 >= 0 && node.child1 >= 0);
            const AABB &b0 = bvh_nodes[node.child0].box;
            if (intersect(b0, pt)) {
                bvh_stack[stack_size++] = node.child0;
            }
            const AABB &b1 = bvh_nodes[node.child1].box;
            if (intersect(b1, pt)) {
                bvh_stack[stack_size++] = node.child1;
            }
            assert(stack_size <= max_bvh_size);
        }
    }
    return winding_number;
}

DEVICE
int compute_winding_number(const Rect &rect, const Vector2f &pt) {
    const auto &p_min = rect.p_min;
    const auto &p_max = rect.p_max;
    // inside the rectangle: return 1, outside the rectangle: return 0
    if (pt.x > p_min.x && pt.x < p_max.x && pt.y > p_min.y && pt.y < p_max.y) {
        return 1;
    } else {
        return 0;
    }
}

DEVICE
int compute_winding_number(const Shape &shape, const BVHNode *bvh_nodes, const Vector2f &pt) {
    switch (shape.type) {
        case ShapeType::Circle:
            return compute_winding_number(*(const Circle *)shape.ptr, pt);
        case ShapeType::Ellipse:
            return compute_winding_number(*(const Ellipse *)shape.ptr, pt);
        case ShapeType::Path:
            return compute_winding_number(*(const Path *)shape.ptr, bvh_nodes, pt);
        case ShapeType::Rect:
            return compute_winding_number(*(const Rect *)shape.ptr, pt);
    }
    assert(false);
    return 0;
}