Spaces:
Runtime error
Runtime error
File size: 8,280 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#pragma once
#include "diffvg.h"
#include "scene.h"
#include "shape.h"
#include "solve.h"
#include "vector.h"
DEVICE
int compute_winding_number(const Circle &circle, const Vector2f &pt) {
const auto &c = circle.center;
auto r = circle.radius;
// inside the circle: return 1, outside the circle: return 0
if (distance_squared(c, pt) < r * r) {
return 1;
} else {
return 0;
}
}
DEVICE
int compute_winding_number(const Ellipse &ellipse, const Vector2f &pt) {
const auto &c = ellipse.center;
const auto &r = ellipse.radius;
// inside the ellipse: return 1, outside the ellipse: return 0
if (square(c.x - pt.x) / square(r.x) + square(c.y - pt.y) / square(r.y) < 1) {
return 1;
} else {
return 0;
}
}
DEVICE
bool intersect(const AABB &box, const Vector2f &pt) {
if (pt.y < box.p_min.y || pt.y > box.p_max.y) {
return false;
}
if (pt.x > box.p_max.x) {
return false;
}
return true;
}
DEVICE
int compute_winding_number(const Path &path, const BVHNode *bvh_nodes, const Vector2f &pt) {
// Shoot a horizontal ray from pt to right, intersect with all curves of the path,
// count intersection
auto num_segments = path.num_base_points;
constexpr auto max_bvh_size = 128;
int bvh_stack[max_bvh_size];
auto stack_size = 0;
auto winding_number = 0;
bvh_stack[stack_size++] = 2 * num_segments - 2;
while (stack_size > 0) {
const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]];
if (node.child1 < 0) {
// leaf
auto base_point_id = node.child0;
auto point_id = - node.child1 - 1;
assert(base_point_id < num_segments);
assert(point_id < path.num_points);
if (path.num_control_points[base_point_id] == 0) {
// Straight line
auto i0 = point_id;
auto i1 = (point_id + 1) % path.num_points;
auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
// intersect p0 + t * (p1 - p0) with pt + t' * (1, 0)
// solve:
// pt.x + t' = v0.x + t * (v1.x - v0.x)
// pt.y = v0.y + t * (v1.y - v0.y)
if (p1.y != p0.y) {
auto t = (pt.y - p0.y) / (p1.y - p0.y);
if (t >= 0 && t <= 1) {
auto tp = p0.x - pt.x + t * (p1.x - p0.x);
if (tp >= 0) {
if (p1.y - p0.y > 0) {
winding_number += 1;
} else {
winding_number -= 1;
}
}
}
}
} else if (path.num_control_points[base_point_id] == 1) {
// Quadratic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = (point_id + 2) % path.num_points;
auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]};
// The curve is (1-t)^2p0 + 2(1-t)tp1 + t^2p2
// = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0
// intersect with pt + t' * (1 0)
// solve
// pt.y = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0
float t[2];
if (solve_quadratic(p0.y-2*p1.y+p2.y,
-2*p0.y+2*p1.y,
p0.y-pt.y,
&t[0], &t[1])) {
for (int j = 0; j < 2; j++) {
if (t[j] >= 0 && t[j] <= 1) {
auto tp = (p0.x-2*p1.x+p2.x)*t[j]*t[j] +
(-2*p0.x+2*p1.x)*t[j] +
p0.x-pt.x;
if (tp >= 0) {
if (2*(p0.y-2*p1.y+p2.y)*t[j]+(-2*p0.y+2*p1.y) > 0) {
winding_number += 1;
} else {
winding_number -= 1;
}
}
}
}
}
} else if (path.num_control_points[base_point_id] == 2) {
// Cubic Bezier curve
auto i0 = point_id;
auto i1 = point_id + 1;
auto i2 = point_id + 2;
auto i3 = (point_id + 3) % path.num_points;
auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]};
auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]};
auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]};
auto p3 = Vector2f{path.points[2 * i3], path.points[2 * i3 + 1]};
// The curve is (1 - t)^3 p0 + 3 * (1 - t)^2 t p1 + 3 * (1 - t) t^2 p2 + t^3 p3
// = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0
// intersect with pt + t' * (1 0)
// solve:
// pt.y = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0
double t[3];
int num_sol = solve_cubic(double(-p0.y+3*p1.y-3*p2.y+p3.y),
double(3*p0.y-6*p1.y+3*p2.y),
double(-3*p0.y+3*p1.y),
double(p0.y-pt.y),
t);
for (int j = 0; j < num_sol; j++) {
if (t[j] >= 0 && t[j] <= 1) {
// t' = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0 - pt.x
auto tp = (-p0.x+3*p1.x-3*p2.x+p3.x)*t[j]*t[j]*t[j]+
(3*p0.x-6*p1.x+3*p2.x)*t[j]*t[j]+
(-3*p0.x+3*p1.x)*t[j]+
p0.x-pt.x;
if (tp > 0) {
if (3*(-p0.y+3*p1.y-3*p2.y+p3.y)*t[j]*t[j]+
2*(3*p0.y-6*p1.y+3*p2.y)*t[j]+
(-3*p0.y+3*p1.y) > 0) {
winding_number += 1;
} else {
winding_number -= 1;
}
}
}
}
} else {
assert(false);
}
} else {
assert(node.child0 >= 0 && node.child1 >= 0);
const AABB &b0 = bvh_nodes[node.child0].box;
if (intersect(b0, pt)) {
bvh_stack[stack_size++] = node.child0;
}
const AABB &b1 = bvh_nodes[node.child1].box;
if (intersect(b1, pt)) {
bvh_stack[stack_size++] = node.child1;
}
assert(stack_size <= max_bvh_size);
}
}
return winding_number;
}
DEVICE
int compute_winding_number(const Rect &rect, const Vector2f &pt) {
const auto &p_min = rect.p_min;
const auto &p_max = rect.p_max;
// inside the rectangle: return 1, outside the rectangle: return 0
if (pt.x > p_min.x && pt.x < p_max.x && pt.y > p_min.y && pt.y < p_max.y) {
return 1;
} else {
return 0;
}
}
DEVICE
int compute_winding_number(const Shape &shape, const BVHNode *bvh_nodes, const Vector2f &pt) {
switch (shape.type) {
case ShapeType::Circle:
return compute_winding_number(*(const Circle *)shape.ptr, pt);
case ShapeType::Ellipse:
return compute_winding_number(*(const Ellipse *)shape.ptr, pt);
case ShapeType::Path:
return compute_winding_number(*(const Path *)shape.ptr, bvh_nodes, pt);
case ShapeType::Rect:
return compute_winding_number(*(const Rect *)shape.ptr, pt);
}
assert(false);
return 0;
}
|