Spaces:
Runtime error
Runtime error
File size: 28,737 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* Simple caching allocator for device memory allocations. The allocator is
* thread-safe and capable of managing device allocations on multiple devices.
******************************************************************************/
#pragma once
#include "util_namespace.cuh"
#include "util_debug.cuh"
#include <set>
#include <map>
#include "host/mutex.cuh"
#include <math.h>
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \addtogroup UtilMgmt
* @{
*/
/******************************************************************************
* CachingDeviceAllocator (host use)
******************************************************************************/
/**
* \brief A simple caching allocator for device memory allocations.
*
* \par Overview
* The allocator is thread-safe and stream-safe and is capable of managing cached
* device allocations on multiple devices. It behaves as follows:
*
* \par
* - Allocations from the allocator are associated with an \p active_stream. Once freed,
* the allocation becomes available immediately for reuse within the \p active_stream
* with which it was associated with during allocation, and it becomes available for
* reuse within other streams when all prior work submitted to \p active_stream has completed.
* - Allocations are categorized and cached by bin size. A new allocation request of
* a given size will only consider cached allocations within the corresponding bin.
* - Bin limits progress geometrically in accordance with the growth factor
* \p bin_growth provided during construction. Unused device allocations within
* a larger bin cache are not reused for allocation requests that categorize to
* smaller bin sizes.
* - Allocation requests below (\p bin_growth ^ \p min_bin) are rounded up to
* (\p bin_growth ^ \p min_bin).
* - Allocations above (\p bin_growth ^ \p max_bin) are not rounded up to the nearest
* bin and are simply freed when they are deallocated instead of being returned
* to a bin-cache.
* - %If the total storage of cached allocations on a given device will exceed
* \p max_cached_bytes, allocations for that device are simply freed when they are
* deallocated instead of being returned to their bin-cache.
*
* \par
* For example, the default-constructed CachingDeviceAllocator is configured with:
* - \p bin_growth = 8
* - \p min_bin = 3
* - \p max_bin = 7
* - \p max_cached_bytes = 6MB - 1B
*
* \par
* which delineates five bin-sizes: 512B, 4KB, 32KB, 256KB, and 2MB
* and sets a maximum of 6,291,455 cached bytes per device
*
*/
struct CachingDeviceAllocator
{
//---------------------------------------------------------------------
// Constants
//---------------------------------------------------------------------
/// Out-of-bounds bin
static const unsigned int INVALID_BIN = (unsigned int) -1;
/// Invalid size
static const size_t INVALID_SIZE = (size_t) -1;
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
/// Invalid device ordinal
static const int INVALID_DEVICE_ORDINAL = -1;
//---------------------------------------------------------------------
// Type definitions and helper types
//---------------------------------------------------------------------
/**
* Descriptor for device memory allocations
*/
struct BlockDescriptor
{
void* d_ptr; // Device pointer
size_t bytes; // Size of allocation in bytes
unsigned int bin; // Bin enumeration
int device; // device ordinal
cudaStream_t associated_stream; // Associated associated_stream
cudaEvent_t ready_event; // Signal when associated stream has run to the point at which this block was freed
// Constructor (suitable for searching maps for a specific block, given its pointer and device)
BlockDescriptor(void *d_ptr, int device) :
d_ptr(d_ptr),
bytes(0),
bin(INVALID_BIN),
device(device),
associated_stream(0),
ready_event(0)
{}
// Constructor (suitable for searching maps for a range of suitable blocks, given a device)
BlockDescriptor(int device) :
d_ptr(NULL),
bytes(0),
bin(INVALID_BIN),
device(device),
associated_stream(0),
ready_event(0)
{}
// Comparison functor for comparing device pointers
static bool PtrCompare(const BlockDescriptor &a, const BlockDescriptor &b)
{
if (a.device == b.device)
return (a.d_ptr < b.d_ptr);
else
return (a.device < b.device);
}
// Comparison functor for comparing allocation sizes
static bool SizeCompare(const BlockDescriptor &a, const BlockDescriptor &b)
{
if (a.device == b.device)
return (a.bytes < b.bytes);
else
return (a.device < b.device);
}
};
/// BlockDescriptor comparator function interface
typedef bool (*Compare)(const BlockDescriptor &, const BlockDescriptor &);
class TotalBytes {
public:
size_t free;
size_t live;
TotalBytes() { free = live = 0; }
};
/// Set type for cached blocks (ordered by size)
typedef std::multiset<BlockDescriptor, Compare> CachedBlocks;
/// Set type for live blocks (ordered by ptr)
typedef std::multiset<BlockDescriptor, Compare> BusyBlocks;
/// Map type of device ordinals to the number of cached bytes cached by each device
typedef std::map<int, TotalBytes> GpuCachedBytes;
//---------------------------------------------------------------------
// Utility functions
//---------------------------------------------------------------------
/**
* Integer pow function for unsigned base and exponent
*/
static unsigned int IntPow(
unsigned int base,
unsigned int exp)
{
unsigned int retval = 1;
while (exp > 0)
{
if (exp & 1) {
retval = retval * base; // multiply the result by the current base
}
base = base * base; // square the base
exp = exp >> 1; // divide the exponent in half
}
return retval;
}
/**
* Round up to the nearest power-of
*/
void NearestPowerOf(
unsigned int &power,
size_t &rounded_bytes,
unsigned int base,
size_t value)
{
power = 0;
rounded_bytes = 1;
if (value * base < value)
{
// Overflow
power = sizeof(size_t) * 8;
rounded_bytes = size_t(0) - 1;
return;
}
while (rounded_bytes < value)
{
rounded_bytes *= base;
power++;
}
}
//---------------------------------------------------------------------
// Fields
//---------------------------------------------------------------------
cub::Mutex mutex; /// Mutex for thread-safety
unsigned int bin_growth; /// Geometric growth factor for bin-sizes
unsigned int min_bin; /// Minimum bin enumeration
unsigned int max_bin; /// Maximum bin enumeration
size_t min_bin_bytes; /// Minimum bin size
size_t max_bin_bytes; /// Maximum bin size
size_t max_cached_bytes; /// Maximum aggregate cached bytes per device
const bool skip_cleanup; /// Whether or not to skip a call to FreeAllCached() when destructor is called. (The CUDA runtime may have already shut down for statically declared allocators)
bool debug; /// Whether or not to print (de)allocation events to stdout
GpuCachedBytes cached_bytes; /// Map of device ordinal to aggregate cached bytes on that device
CachedBlocks cached_blocks; /// Set of cached device allocations available for reuse
BusyBlocks live_blocks; /// Set of live device allocations currently in use
#endif // DOXYGEN_SHOULD_SKIP_THIS
//---------------------------------------------------------------------
// Methods
//---------------------------------------------------------------------
/**
* \brief Constructor.
*/
CachingDeviceAllocator(
unsigned int bin_growth, ///< Geometric growth factor for bin-sizes
unsigned int min_bin = 1, ///< Minimum bin (default is bin_growth ^ 1)
unsigned int max_bin = INVALID_BIN, ///< Maximum bin (default is no max bin)
size_t max_cached_bytes = INVALID_SIZE, ///< Maximum aggregate cached bytes per device (default is no limit)
bool skip_cleanup = false, ///< Whether or not to skip a call to \p FreeAllCached() when the destructor is called (default is to deallocate)
bool debug = false) ///< Whether or not to print (de)allocation events to stdout (default is no stderr output)
:
bin_growth(bin_growth),
min_bin(min_bin),
max_bin(max_bin),
min_bin_bytes(IntPow(bin_growth, min_bin)),
max_bin_bytes(IntPow(bin_growth, max_bin)),
max_cached_bytes(max_cached_bytes),
skip_cleanup(skip_cleanup),
debug(debug),
cached_blocks(BlockDescriptor::SizeCompare),
live_blocks(BlockDescriptor::PtrCompare)
{}
/**
* \brief Default constructor.
*
* Configured with:
* \par
* - \p bin_growth = 8
* - \p min_bin = 3
* - \p max_bin = 7
* - \p max_cached_bytes = (\p bin_growth ^ \p max_bin) * 3) - 1 = 6,291,455 bytes
*
* which delineates five bin-sizes: 512B, 4KB, 32KB, 256KB, and 2MB and
* sets a maximum of 6,291,455 cached bytes per device
*/
CachingDeviceAllocator(
bool skip_cleanup = false,
bool debug = false)
:
bin_growth(8),
min_bin(3),
max_bin(7),
min_bin_bytes(IntPow(bin_growth, min_bin)),
max_bin_bytes(IntPow(bin_growth, max_bin)),
max_cached_bytes((max_bin_bytes * 3) - 1),
skip_cleanup(skip_cleanup),
debug(debug),
cached_blocks(BlockDescriptor::SizeCompare),
live_blocks(BlockDescriptor::PtrCompare)
{}
/**
* \brief Sets the limit on the number bytes this allocator is allowed to cache per device.
*
* Changing the ceiling of cached bytes does not cause any allocations (in-use or
* cached-in-reserve) to be freed. See \p FreeAllCached().
*/
cudaError_t SetMaxCachedBytes(
size_t max_cached_bytes)
{
// Lock
mutex.Lock();
if (debug) _CubLog("Changing max_cached_bytes (%lld -> %lld)\n", (long long) this->max_cached_bytes, (long long) max_cached_bytes);
this->max_cached_bytes = max_cached_bytes;
// Unlock
mutex.Unlock();
return cudaSuccess;
}
/**
* \brief Provides a suitable allocation of device memory for the given size on the specified device.
*
* Once freed, the allocation becomes available immediately for reuse within the \p active_stream
* with which it was associated with during allocation, and it becomes available for reuse within other
* streams when all prior work submitted to \p active_stream has completed.
*/
cudaError_t DeviceAllocate(
int device, ///< [in] Device on which to place the allocation
void **d_ptr, ///< [out] Reference to pointer to the allocation
size_t bytes, ///< [in] Minimum number of bytes for the allocation
cudaStream_t active_stream = 0) ///< [in] The stream to be associated with this allocation
{
*d_ptr = NULL;
int entrypoint_device = INVALID_DEVICE_ORDINAL;
cudaError_t error = cudaSuccess;
if (device == INVALID_DEVICE_ORDINAL)
{
if (CubDebug(error = cudaGetDevice(&entrypoint_device))) return error;
device = entrypoint_device;
}
// Create a block descriptor for the requested allocation
bool found = false;
BlockDescriptor search_key(device);
search_key.associated_stream = active_stream;
NearestPowerOf(search_key.bin, search_key.bytes, bin_growth, bytes);
if (search_key.bin > max_bin)
{
// Bin is greater than our maximum bin: allocate the request
// exactly and give out-of-bounds bin. It will not be cached
// for reuse when returned.
search_key.bin = INVALID_BIN;
search_key.bytes = bytes;
}
else
{
// Search for a suitable cached allocation: lock
mutex.Lock();
if (search_key.bin < min_bin)
{
// Bin is less than minimum bin: round up
search_key.bin = min_bin;
search_key.bytes = min_bin_bytes;
}
// Iterate through the range of cached blocks on the same device in the same bin
CachedBlocks::iterator block_itr = cached_blocks.lower_bound(search_key);
while ((block_itr != cached_blocks.end())
&& (block_itr->device == device)
&& (block_itr->bin == search_key.bin))
{
// To prevent races with reusing blocks returned by the host but still
// in use by the device, only consider cached blocks that are
// either (from the active stream) or (from an idle stream)
if ((active_stream == block_itr->associated_stream) ||
(CubDebug(cudaEventQuery(block_itr->ready_event) != cudaErrorNotReady)))
{
// Reuse existing cache block. Insert into live blocks.
found = true;
search_key = *block_itr;
search_key.associated_stream = active_stream;
live_blocks.insert(search_key);
// Remove from free blocks
cached_bytes[device].free -= search_key.bytes;
cached_bytes[device].live += search_key.bytes;
if (debug) _CubLog("\tDevice %d reused cached block at %p (%lld bytes) for stream %lld (previously associated with stream %lld).\n",
device, search_key.d_ptr, (long long) search_key.bytes, (long long) search_key.associated_stream, (long long) block_itr->associated_stream);
cached_blocks.erase(block_itr);
break;
}
block_itr++;
}
// Done searching: unlock
mutex.Unlock();
}
// Allocate the block if necessary
if (!found)
{
// Set runtime's current device to specified device (entrypoint may not be set)
if (device != entrypoint_device)
{
if (CubDebug(error = cudaGetDevice(&entrypoint_device))) return error;
if (CubDebug(error = cudaSetDevice(device))) return error;
}
// Attempt to allocate
if (CubDebug(error = cudaMalloc(&search_key.d_ptr, search_key.bytes)) == cudaErrorMemoryAllocation)
{
// The allocation attempt failed: free all cached blocks on device and retry
if (debug) _CubLog("\tDevice %d failed to allocate %lld bytes for stream %lld, retrying after freeing cached allocations",
device, (long long) search_key.bytes, (long long) search_key.associated_stream);
error = cudaSuccess; // Reset the error we will return
cudaGetLastError(); // Reset CUDART's error
// Lock
mutex.Lock();
// Iterate the range of free blocks on the same device
BlockDescriptor free_key(device);
CachedBlocks::iterator block_itr = cached_blocks.lower_bound(free_key);
while ((block_itr != cached_blocks.end()) && (block_itr->device == device))
{
// No need to worry about synchronization with the device: cudaFree is
// blocking and will synchronize across all kernels executing
// on the current device
// Free device memory and destroy stream event.
if (CubDebug(error = cudaFree(block_itr->d_ptr))) break;
if (CubDebug(error = cudaEventDestroy(block_itr->ready_event))) break;
// Reduce balance and erase entry
cached_bytes[device].free -= block_itr->bytes;
if (debug) _CubLog("\tDevice %d freed %lld bytes.\n\t\t %lld available blocks cached (%lld bytes), %lld live blocks (%lld bytes) outstanding.\n",
device, (long long) block_itr->bytes, (long long) cached_blocks.size(), (long long) cached_bytes[device].free, (long long) live_blocks.size(), (long long) cached_bytes[device].live);
cached_blocks.erase(block_itr);
block_itr++;
}
// Unlock
mutex.Unlock();
// Return under error
if (error) return error;
// Try to allocate again
if (CubDebug(error = cudaMalloc(&search_key.d_ptr, search_key.bytes))) return error;
}
// Create ready event
if (CubDebug(error = cudaEventCreateWithFlags(&search_key.ready_event, cudaEventDisableTiming)))
return error;
// Insert into live blocks
mutex.Lock();
live_blocks.insert(search_key);
cached_bytes[device].live += search_key.bytes;
mutex.Unlock();
if (debug) _CubLog("\tDevice %d allocated new device block at %p (%lld bytes associated with stream %lld).\n",
device, search_key.d_ptr, (long long) search_key.bytes, (long long) search_key.associated_stream);
// Attempt to revert back to previous device if necessary
if ((entrypoint_device != INVALID_DEVICE_ORDINAL) && (entrypoint_device != device))
{
if (CubDebug(error = cudaSetDevice(entrypoint_device))) return error;
}
}
// Copy device pointer to output parameter
*d_ptr = search_key.d_ptr;
if (debug) _CubLog("\t\t%lld available blocks cached (%lld bytes), %lld live blocks outstanding(%lld bytes).\n",
(long long) cached_blocks.size(), (long long) cached_bytes[device].free, (long long) live_blocks.size(), (long long) cached_bytes[device].live);
return error;
}
/**
* \brief Provides a suitable allocation of device memory for the given size on the current device.
*
* Once freed, the allocation becomes available immediately for reuse within the \p active_stream
* with which it was associated with during allocation, and it becomes available for reuse within other
* streams when all prior work submitted to \p active_stream has completed.
*/
cudaError_t DeviceAllocate(
void **d_ptr, ///< [out] Reference to pointer to the allocation
size_t bytes, ///< [in] Minimum number of bytes for the allocation
cudaStream_t active_stream = 0) ///< [in] The stream to be associated with this allocation
{
return DeviceAllocate(INVALID_DEVICE_ORDINAL, d_ptr, bytes, active_stream);
}
/**
* \brief Frees a live allocation of device memory on the specified device, returning it to the allocator.
*
* Once freed, the allocation becomes available immediately for reuse within the \p active_stream
* with which it was associated with during allocation, and it becomes available for reuse within other
* streams when all prior work submitted to \p active_stream has completed.
*/
cudaError_t DeviceFree(
int device,
void* d_ptr)
{
int entrypoint_device = INVALID_DEVICE_ORDINAL;
cudaError_t error = cudaSuccess;
if (device == INVALID_DEVICE_ORDINAL)
{
if (CubDebug(error = cudaGetDevice(&entrypoint_device)))
return error;
device = entrypoint_device;
}
// Lock
mutex.Lock();
// Find corresponding block descriptor
bool recached = false;
BlockDescriptor search_key(d_ptr, device);
BusyBlocks::iterator block_itr = live_blocks.find(search_key);
if (block_itr != live_blocks.end())
{
// Remove from live blocks
search_key = *block_itr;
live_blocks.erase(block_itr);
cached_bytes[device].live -= search_key.bytes;
// Keep the returned allocation if bin is valid and we won't exceed the max cached threshold
if ((search_key.bin != INVALID_BIN) && (cached_bytes[device].free + search_key.bytes <= max_cached_bytes))
{
// Insert returned allocation into free blocks
recached = true;
cached_blocks.insert(search_key);
cached_bytes[device].free += search_key.bytes;
if (debug) _CubLog("\tDevice %d returned %lld bytes from associated stream %lld.\n\t\t %lld available blocks cached (%lld bytes), %lld live blocks outstanding. (%lld bytes)\n",
device, (long long) search_key.bytes, (long long) search_key.associated_stream, (long long) cached_blocks.size(),
(long long) cached_bytes[device].free, (long long) live_blocks.size(), (long long) cached_bytes[device].live);
}
}
// First set to specified device (entrypoint may not be set)
if (device != entrypoint_device)
{
if (CubDebug(error = cudaGetDevice(&entrypoint_device))) return error;
if (CubDebug(error = cudaSetDevice(device))) return error;
}
if (recached)
{
// Insert the ready event in the associated stream (must have current device set properly)
if (CubDebug(error = cudaEventRecord(search_key.ready_event, search_key.associated_stream))) return error;
}
// Unlock
mutex.Unlock();
if (!recached)
{
// Free the allocation from the runtime and cleanup the event.
if (CubDebug(error = cudaFree(d_ptr))) return error;
if (CubDebug(error = cudaEventDestroy(search_key.ready_event))) return error;
if (debug) _CubLog("\tDevice %d freed %lld bytes from associated stream %lld.\n\t\t %lld available blocks cached (%lld bytes), %lld live blocks (%lld bytes) outstanding.\n",
device, (long long) search_key.bytes, (long long) search_key.associated_stream, (long long) cached_blocks.size(), (long long) cached_bytes[device].free, (long long) live_blocks.size(), (long long) cached_bytes[device].live);
}
// Reset device
if ((entrypoint_device != INVALID_DEVICE_ORDINAL) && (entrypoint_device != device))
{
if (CubDebug(error = cudaSetDevice(entrypoint_device))) return error;
}
return error;
}
/**
* \brief Frees a live allocation of device memory on the current device, returning it to the allocator.
*
* Once freed, the allocation becomes available immediately for reuse within the \p active_stream
* with which it was associated with during allocation, and it becomes available for reuse within other
* streams when all prior work submitted to \p active_stream has completed.
*/
cudaError_t DeviceFree(
void* d_ptr)
{
return DeviceFree(INVALID_DEVICE_ORDINAL, d_ptr);
}
/**
* \brief Frees all cached device allocations on all devices
*/
cudaError_t FreeAllCached()
{
cudaError_t error = cudaSuccess;
int entrypoint_device = INVALID_DEVICE_ORDINAL;
int current_device = INVALID_DEVICE_ORDINAL;
mutex.Lock();
while (!cached_blocks.empty())
{
// Get first block
CachedBlocks::iterator begin = cached_blocks.begin();
// Get entry-point device ordinal if necessary
if (entrypoint_device == INVALID_DEVICE_ORDINAL)
{
if (CubDebug(error = cudaGetDevice(&entrypoint_device))) break;
}
// Set current device ordinal if necessary
if (begin->device != current_device)
{
if (CubDebug(error = cudaSetDevice(begin->device))) break;
current_device = begin->device;
}
// Free device memory
if (CubDebug(error = cudaFree(begin->d_ptr))) break;
if (CubDebug(error = cudaEventDestroy(begin->ready_event))) break;
// Reduce balance and erase entry
cached_bytes[current_device].free -= begin->bytes;
if (debug) _CubLog("\tDevice %d freed %lld bytes.\n\t\t %lld available blocks cached (%lld bytes), %lld live blocks (%lld bytes) outstanding.\n",
current_device, (long long) begin->bytes, (long long) cached_blocks.size(), (long long) cached_bytes[current_device].free, (long long) live_blocks.size(), (long long) cached_bytes[current_device].live);
cached_blocks.erase(begin);
}
mutex.Unlock();
// Attempt to revert back to entry-point device if necessary
if (entrypoint_device != INVALID_DEVICE_ORDINAL)
{
if (CubDebug(error = cudaSetDevice(entrypoint_device))) return error;
}
return error;
}
/**
* \brief Destructor
*/
virtual ~CachingDeviceAllocator()
{
if (!skip_cleanup)
FreeAllCached();
}
};
/** @} */ // end group UtilMgmt
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|