Spaces:
Build error
Build error
File size: 7,194 Bytes
985ef3e 140d3a9 985ef3e 3a03f47 985ef3e 22f7397 7bf4167 22f7397 7c5f9b0 22f7397 7bf4167 fc74e8d 955747f a0eb5f6 a2d12d3 a0eb5f6 184fac5 955747f 184fac5 955747f 184fac5 955747f fc74e8d a0eb5f6 4419e34 a0eb5f6 4419e34 a0eb5f6 955747f a0eb5f6 22f7397 fc74e8d 955747f fc74e8d 955747f 05560e1 fc74e8d 955747f 05560e1 fc74e8d 955747f 05560e1 fc74e8d 955747f 7bf4167 22f7397 7bf4167 22f7397 955747f 611f1cc 53c4d50 955747f 53c4d50 611f1cc 53c4d50 955747f 53c4d50 955747f 22f7397 7bf4167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install --upgrade gradio")
os.system("pip install datamapplot==0.3.0")
import spaces
from pathlib import Path
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
import gradio as gr
from datetime import datetime
import sys
gr.set_static_paths(paths=["static/"])
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path('./static')
static_dir.mkdir(parents=True, exist_ok=True)
# mount FastAPI StaticFiles server
app.mount("/static", StaticFiles(directory=static_dir), name="static")
# Gradio stuff
import datamapplot
import numpy as np
import requests
import io
import pandas as pd
from pyalex import Works, Authors, Sources, Institutions, Concepts, Publishers, Funders
from itertools import chain
from compress_pickle import load, dump
from transformers import AutoTokenizer
from adapters import AutoAdapterModel
import torch
from tqdm import tqdm
from numba.typed import List
import pickle
import pynndescent
import umap
def query_records(search_term):
def invert_abstract(inv_index):
if inv_index is not None:
l_inv = [(w, p) for w, pos in inv_index.items() for p in pos]
return " ".join(map(lambda x: x[0], sorted(l_inv, key=lambda x: x[1])))
else:
return ' '
def get_pub(x):
try:
source = x['source']['display_name']
if source not in ['parsed_publication','Deleted Journal']:
return source
else:
return ' '
except:
return ' '
# Fetch records based on the search term
query = Works().search_filter(abstract=search_term)
records = []
for record in chain(*query.paginate(per_page=200)):
records.append(record)
records_df = pd.DataFrame(records)
records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']]
records_df['parsed_publication'] = [get_pub(x) for x in records_df['primary_location']]
return records_df
################# Setting up the model for specter2 embeddings ###################
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda")
print(f"Using device: {device}")
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_aug2023refresh_base')
model = AutoAdapterModel.from_pretrained('allenai/specter2_aug2023refresh_base')
@spaces.GPU(duration=120)
def create_embeddings(texts_to_embedd):
# Set up the device
print(len(texts_to_embedd))
# Load the proximity adapter and activate it
model.load_adapter("allenai/specter2_aug2023refresh", source="hf", load_as="proximity", set_active=True)
model.set_active_adapters("proximity")
model.to(device)
def batch_generator(data, batch_size):
"""Yield consecutive batches of data."""
for i in range(0, len(data), batch_size):
yield data[i:i + batch_size]
def encode_texts(texts, device, batch_size=16):
"""Process texts in batches and return their embeddings."""
model.eval()
with torch.no_grad():
all_embeddings = []
count = 0
for batch in tqdm(batch_generator(texts, batch_size)):
inputs = tokenizer(batch, padding=True, truncation=True, return_tensors="pt", max_length=512).to(device)
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0, :] # Taking the [CLS] token representation
all_embeddings.append(embeddings.cpu()) # Move to CPU to free GPU memory
#torch.mps.empty_cache() # Clear cache to free up memory
if count == 100:
torch.mps.empty_cache()
count = 0
count +=1
all_embeddings = torch.cat(all_embeddings, dim=0)
return all_embeddings
# Concatenate title and abstract
embeddings = encode_texts(texts_to_embedd, device, batch_size=32).cpu().numpy() # Process texts in batches of 10
return embeddings
def predict(text_input, progress=gr.Progress()):
# get data.
records_df = query_records(text_input)
print(records_df)
texts_to_embedd = [title + tokenizer.sep_token + publication + tokenizer.sep_token + abstract for title, publication, abstract in zip(records_df['title'],records_df['parsed_publication'], records_df['abstract'])]
embeddings = create_embeddings(texts_to_embedd)
print(embeddings)
file_name = f"{datetime.utcnow().strftime('%s')}.html"
file_path = static_dir / file_name
print(file_path)
#
progress(0.7, desc="Loading hover data...")
plot = datamapplot.create_interactive_plot(
basedata_df[['x','y']].values,
np.array(basedata_df['cluster_1_labels']),
hover_text=[str(ix) + ', ' + str(row['parsed_publication']) + str(row['title']) for ix, row in basedata_df.iterrows()],
font_family="Roboto Condensed",
)
progress(0.9, desc="Saving plot...")
plot.save(file_path)
progress(1.0, desc="Done!")
iframe = f"""<iframe src="/static/{file_name}" width="100%" height="500px"></iframe>"""
link = f'<a href="/static/{file_name}" target="_blank">{file_name}</a>'
return link, iframe
with gr.Blocks() as block:
gr.Markdown("""
## Gradio + FastAPI + Static Server
This is a demo of how to use Gradio with FastAPI and a static server.
The Gradio app generates dynamic HTML files and stores them in a static directory. FastAPI serves the static files.
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Name")
markdown = gr.Markdown(label="Output Box")
new_btn = gr.Button("New")
with gr.Column():
html = gr.HTML(label="HTML preview", show_label=True)
new_btn.click(fn=predict, inputs=[text_input], outputs=[markdown, html])
def setup_basemap_data():
# get data.
print("getting basemap data...")
basedata_df = load("100k_filtered_OA_sample_cluster_and_positions.bz")
print(basedata_df)
return basedata_df
def setup_mapper():
# get data.
print("getting mapper...")
params_new = pickle.load(open('umap_mapper_300k_random_OA_specter_2_params.pkl', 'rb'))
print("setting up mapper...")
mapper = umap.UMAP()
mapper.set_params(**params_new.get('umap_params'))
for attr, value in params_new.get('umap_attributes').items():
mapper.__setattr__(attr, value)
mapper.__setattr__('embeddings_', List(params_new.get('umap_attributes').get('embedding_')))
return mapper
basedata_df = setup_basemap_data()
mapper = setup_mapper()
# mount Gradio app to FastAPI app
app = gr.mount_gradio_app(app, block, path="/")
# serve the app
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
# run the app with
# python app.py
# or
# uvicorn "app:app" --host "0.0.0.0" --port 7860 --reload
|