File size: 4,557 Bytes
38167d4
 
f0f4b86
78040a5
10892df
38167d4
10892df
ba3027e
 
38167d4
ba3027e
d6bb045
38167d4
 
 
 
 
 
 
 
 
 
10892df
 
 
8a5ab3e
38167d4
ba3027e
38167d4
 
8a5ab3e
38167d4
ba3027e
cb8b3fe
810a2b0
f28eb9c
38167d4
8a5ab3e
38167d4
 
ba3027e
8a5ab3e
38167d4
 
 
8a5ab3e
82d483e
ba3027e
8a5ab3e
838749f
58b59bc
838749f
bca7fc0
3afdc18
 
838749f
41361e7
6c04fe8
38167d4
8a5ab3e
38167d4
ba3027e
8a5ab3e
38167d4
 
 
8a5ab3e
38167d4
ba3027e
e0f05ce
38167d4
78040a5
 
d8b5c4e
7bd9395
38167d4
8a5ab3e
38167d4
ba3027e
e0f05ce
cb8b3fe
e8eea71
e0f05ce
f0f4b86
 
38167d4
8a5ab3e
38167d4
ba3027e
e0f05ce
38167d4
 
ba3027e
38167d4
 
 
 
 
 
 
8a5ab3e
38167d4
ba3027e
8a5ab3e
38167d4
8a5ab3e
38167d4
 
8a5ab3e
38167d4
ba3027e
8a5ab3e
38167d4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import pandas as pd
import streamlit as st
from my_model.tabs.run_inference import InferenceRunner
from my_model.tabs.finetuning_evaluation import KBVQAEvaluator
from my_model.state_manager import StateManager

class UIManager():
    """Manages the user interface for the Streamlit application."""

    def __init__(self):
        """Initializes the UIManager with predefined tabs."""
        
        self.tabs = {
            "Home": self.display_home,
            "Dataset Analysis": self.display_dataset_analysis,
            "Finetuning and Evaluation Results": self.display_finetuning_evaluation,
            "Run Inference": self.display_run_inference,
            "Dissertation Report": self.display_dissertation_report,
            "Code": self.display_code,
            "More Pages will follow .. ": self.display_placeholder
        }

        state_manager = StateManager()
        state_manager.initialize_state()

    
    def add_tab(self, tab_name, display_function):
        """Adds a new tab to the UI."""
        self.tabs[tab_name] = display_function

    
    def display_sidebar(self):
        """Displays the sidebar for navigation."""
        
        st.sidebar.title("Navigation")
        selection = st.sidebar.radio("Go to", list(self.tabs.keys()), disabled=st.session_state['loading_in_progress'])
        return selection
        

    def display_selected_page(self, selection):
        """Displays the selected page based on user's choice."""
        
        if selection in self.tabs:
            self.tabs[selection]()

    
    def display_home(self):
        """Displays the Home page of the application."""
        
        st.title('MultiModal Learning for Visual Question Answering using World Knowledge')
        st.text('')
        st.header('(Knowledge-Based Visual Question Answering)')
        st.text('')
        st.text('')
        st.text('')
        st.write("""\n\n\n\nThis is an interactive application developed to demonstrate my project as part of the dissertation for Masters degree in Artificial Intelligence at the [University of Bath](https://www.bath.ac.uk/). 
                    \n\n\nDeveloped by: [Mohammed H AlHaj](https://www.linkedin.com/in/m7mdal7aj) | Dissertation Supervisor: [Andreas Theophilou](https://researchportal.bath.ac.uk/en/persons/andreas-theophilou)
                    \n\nFurther details will be updated later . .""")

    
    def display_dataset_analysis(self):
        """Displays the Dataset Analysis page."""
        
        st.title("OK-VQA Dataset Analysis")
        st.write("This is a Place Holder until the contents are uploaded.")

    
    def display_finetuning_evaluation(self):
        """Displays the Finetuning and Evaluation Results page."""
        
        st.title("Finetuning and Evaluation Results")
        st.write("This page demonstrates the fine-tuning and model evaluation results")
        st.write("\n")
        evaluator = KBVQAEvaluator()
        evaluator.run_evaluator()

    
    def display_run_inference(self):
        """Displays the Run Inference page."""
        
        st.title("Run Inference")
        st.write("Please note that this is not a general purpose model, it is specifically trained on [OK-VQA Dataset](https://okvqa.allenai.org/) and desgined to give short and direct answers to the given questions about the given image.")
        st.write("\n")
        inference_runner = InferenceRunner()
        inference_runner.run_inference()

    
    def display_dissertation_report(self):
        """Displays the Dissertation Report page."""
        
        st.title("Dissertation Report")
        st.write("Click the link below to view the PDF.")
        # Error handling for file access should be considered here
        st.download_button(
            label="Download PDF",
            data=open("Files/Dissertation Report.pdf", "rb"),
            file_name="example.pdf",
            mime="application/octet-stream"
        )

    
    def display_code(self):
        """Displays the Code page with a link to the project's code repository."""
        
        st.title("Code")
        st.markdown("You can view the code for this project on HuggingFace Space files page.")
        st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True)

    
    def display_placeholder(self):
        """Displays a placeholder for future content."""
        
        st.title("Stay Tuned")
        st.write("This is a Place Holder until the contents are uploaded.")