File size: 43,437 Bytes
92894b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "t6MPjfT5NrKQ"
      },
      "source": [
        "<div align=\"center\">\n",
        "\n",
        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
        "\n",
        "\n",
        "<br>\n",
        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/segment/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
        "<br>\n",
        "\n",
        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
        "\n",
        "</div>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7mGmQbAO5pQb"
      },
      "source": [
        "# Setup\n",
        "\n",
        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "wbvMlHd_QwMG",
        "outputId": "171b23f0-71b9-4cbf-b666-6fa2ecef70c8"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
          ]
        }
      ],
      "source": [
        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
        "%cd yolov5\n",
        "%pip install -qr requirements.txt comet_ml  # install\n",
        "\n",
        "import torch\n",
        "import utils\n",
        "display = utils.notebook_init()  # checks"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4JnkELT0cIJg"
      },
      "source": [
        "# 1. Predict\n",
        "\n",
        "`segment/predict.py` runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict`. Example inference sources are:\n",
        "\n",
        "```shell\n",
        "python segment/predict.py --source 0  # webcam\n",
        "                             img.jpg  # image \n",
        "                             vid.mp4  # video\n",
        "                             screen  # screenshot\n",
        "                             path/  # directory\n",
        "                             'path/*.jpg'  # glob\n",
        "                             'https://youtu.be/LNwODJXcvt4'  # YouTube\n",
        "                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zR9ZbuQCH7FX",
        "outputId": "3f67f1c7-f15e-4fa5-d251-967c3b77eaad"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1msegment/predict: \u001b[0mweights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False\n",
            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
            "\n",
            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...\n",
            "100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]\n",
            "\n",
            "Fusing layers... \n",
            "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms\n",
            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms\n",
            "Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)\n",
            "Results saved to \u001b[1mruns/predict-seg/exp\u001b[0m\n"
          ]
        }
      ],
      "source": [
        "!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images\n",
        "#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hkAzDWJ7cWTr"
      },
      "source": [
        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/199030123-08c72f8d-6871-4116-8ed3-c373642cf28e.jpg\" width=\"600\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0eq1SMWl6Sfn"
      },
      "source": [
        "# 2. Validate\n",
        "Validate a model's accuracy on the [COCO](https://cocodataset.org/#home) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WQPtK1QYVaD_",
        "outputId": "9d751d8c-bee8-4339-cf30-9854ca530449"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip  ...\n",
            "Downloading http://images.cocodataset.org/zips/val2017.zip ...\n",
            "######################################################################## 100.0%\n",
            "######################################################################## 100.0%\n"
          ]
        }
      ],
      "source": [
        "# Download COCO val\n",
        "!bash data/scripts/get_coco.sh --val --segments  # download (780M - 5000 images)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "X58w8JLpMnjH",
        "outputId": "a140d67a-02da-479e-9ddb-7d54bf9e407a"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1msegment/val: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False\n",
            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
            "\n",
            "Fusing layers... \n",
            "YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 157/157 [01:54<00:00,  1.37it/s]\n",
            "                   all       5000      36335      0.673      0.517      0.566      0.373      0.672       0.49      0.532      0.319\n",
            "Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)\n",
            "Results saved to \u001b[1mruns/val-seg/exp\u001b[0m\n"
          ]
        }
      ],
      "source": [
        "# Validate YOLOv5s-seg on COCO val\n",
        "!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZY2VXXXu74w5"
      },
      "source": [
        "# 3. Train\n",
        "\n",
        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
        "<br><br>\n",
        "\n",
        "Train a YOLOv5s-seg model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128-seg.yaml`, starting from pretrained `--weights yolov5s-seg.pt`, or from randomly initialized `--weights '' --cfg yolov5s-seg.yaml`.\n",
        "\n",
        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
        "- **Training Results** are saved to `runs/train-seg/` with incrementing run directories, i.e. `runs/train-seg/exp2`, `runs/train-seg/exp3` etc.\n",
        "<br><br>\n",
        "\n",
        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
        "\n",
        "## Train on Custom Data with Roboflow 🌟 NEW\n",
        "\n",
        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
        "\n",
        "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/](https://blog.roboflow.com/train-yolov5-instance-segmentation-custom-dataset/?ref=ultralytics)\n",
        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1JTz7kpmHsg-5qwVz2d2IH3AaenI1tv0N?usp=sharing)\n",
        "<br>\n",
        "\n",
        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://robflow-public-assets.s3.amazonaws.com/how-to-train-yolov5-segmentation-annotation.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "i3oKtE4g-aNn"
      },
      "outputs": [],
      "source": [
        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
        "logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']\n",
        "\n",
        "if logger == 'Comet':\n",
        "  %pip install -q comet_ml\n",
        "  import comet_ml; comet_ml.init()\n",
        "elif logger == 'ClearML':\n",
        "  %pip install -q clearml\n",
        "  import clearml; clearml.browser_login()\n",
        "elif logger == 'TensorBoard':\n",
        "  %load_ext tensorboard\n",
        "  %tensorboard --logdir runs/train"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "1NcFxRcFdJ_O",
        "outputId": "3a3e0cf7-e79c-47a5-c8e7-2d26eeeab988"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1msegment/train: \u001b[0mweights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False\n",
            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
            "YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
            "\n",
            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/\n",
            "\n",
            "Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']\n",
            "Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...\n",
            "100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]\n",
            "Dataset download success ✅ (1.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
            "\n",
            "                 from  n    params  module                                  arguments                     \n",
            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
            " 24      [17, 20, 23]  1    615133  models.yolo.Segment                     [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]\n",
            "Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs\n",
            "\n",
            "Transferred 367/367 items from yolov5s-seg.pt\n",
            "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n",
            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias\n",
            "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128-seg/labels/train2017.cache\n",
            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]\n",
            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]\n",
            "\n",
            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
            "Plotting labels to runs/train-seg/exp/labels.jpg... \n",
            "Image sizes 640 train, 640 val\n",
            "Using 2 dataloader workers\n",
            "Logging results to \u001b[1mruns/train-seg/exp\u001b[0m\n",
            "Starting training for 3 epochs...\n",
            "\n",
            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
            "        0/2      4.92G     0.0417    0.04646    0.06066    0.02126        192        640: 100% 8/8 [00:08<00:00,  1.10s/it]\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.81it/s]\n",
            "                   all        128        929      0.737      0.649      0.715      0.492      0.719      0.617      0.658      0.408\n",
            "\n",
            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
            "        1/2      6.29G    0.04157    0.04503    0.05772    0.01777        208        640: 100% 8/8 [00:09<00:00,  1.21s/it]\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.87it/s]\n",
            "                   all        128        929      0.756      0.674      0.738      0.506      0.725       0.64       0.68      0.422\n",
            "\n",
            "      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size\n",
            "        2/2      6.29G     0.0425    0.04793    0.06784    0.01863        161        640: 100% 8/8 [00:03<00:00,  2.02it/s]\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.88it/s]\n",
            "                   all        128        929      0.736      0.694      0.747      0.522      0.769      0.622      0.683      0.427\n",
            "\n",
            "3 epochs completed in 0.009 hours.\n",
            "Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB\n",
            "Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB\n",
            "\n",
            "Validating runs/train-seg/exp/weights/best.pt...\n",
            "Fusing layers... \n",
            "Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs\n",
            "                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:06<00:00,  1.59s/it]\n",
            "                   all        128        929      0.738      0.694      0.746      0.522      0.759      0.625      0.682      0.426\n",
            "                person        128        254      0.845      0.756      0.836       0.55      0.861      0.669      0.759      0.407\n",
            "               bicycle        128          6      0.475      0.333      0.549      0.341      0.711      0.333      0.526      0.322\n",
            "                   car        128         46      0.612      0.565      0.539      0.257      0.555      0.435      0.477      0.171\n",
            "            motorcycle        128          5       0.73        0.8      0.752      0.571      0.747        0.8      0.752       0.42\n",
            "              airplane        128          6          1      0.943      0.995      0.732       0.92      0.833      0.839      0.555\n",
            "                   bus        128          7      0.677      0.714      0.722      0.653      0.711      0.714      0.722      0.593\n",
            "                 train        128          3          1      0.951      0.995      0.551          1      0.884      0.995      0.781\n",
            "                 truck        128         12      0.555      0.417      0.457      0.285      0.624      0.417      0.397      0.277\n",
            "                  boat        128          6      0.624        0.5      0.584      0.186          1      0.326      0.412      0.133\n",
            "         traffic light        128         14      0.513      0.302      0.411      0.247      0.435      0.214      0.376      0.251\n",
            "             stop sign        128          2      0.824          1      0.995      0.796      0.906          1      0.995      0.747\n",
            "                 bench        128          9       0.75      0.667      0.763      0.367      0.724      0.585      0.698      0.209\n",
            "                  bird        128         16      0.961          1      0.995      0.686      0.918      0.938       0.91      0.525\n",
            "                   cat        128          4      0.771      0.857      0.945      0.752       0.76        0.8      0.945      0.728\n",
            "                   dog        128          9      0.987      0.778      0.963      0.681          1      0.705       0.89      0.574\n",
            "                 horse        128          2      0.703          1      0.995      0.697      0.759          1      0.995      0.249\n",
            "              elephant        128         17      0.916      0.882       0.93      0.691      0.811      0.765      0.829      0.537\n",
            "                  bear        128          1      0.664          1      0.995      0.995      0.701          1      0.995      0.895\n",
            "                 zebra        128          4      0.864          1      0.995      0.921      0.879          1      0.995      0.804\n",
            "               giraffe        128          9      0.883      0.889       0.94      0.683      0.845      0.778       0.78      0.463\n",
            "              backpack        128          6          1       0.59      0.701      0.372          1      0.474       0.52      0.252\n",
            "              umbrella        128         18      0.654      0.839      0.887       0.52      0.517      0.556      0.427      0.229\n",
            "               handbag        128         19       0.54      0.211      0.408      0.221      0.796      0.206      0.396      0.196\n",
            "                   tie        128          7      0.864      0.857      0.857      0.577      0.925      0.857      0.857      0.534\n",
            "              suitcase        128          4      0.716          1      0.945      0.647      0.767          1      0.945      0.634\n",
            "               frisbee        128          5      0.708        0.8      0.761      0.643      0.737        0.8      0.761      0.501\n",
            "                  skis        128          1      0.691          1      0.995      0.796      0.761          1      0.995      0.199\n",
            "             snowboard        128          7      0.918      0.857      0.904      0.604       0.32      0.286      0.235      0.137\n",
            "           sports ball        128          6      0.902      0.667      0.701      0.466      0.727        0.5      0.497      0.471\n",
            "                  kite        128         10      0.586        0.4      0.511      0.231      0.663      0.394      0.417      0.139\n",
            "          baseball bat        128          4      0.359        0.5      0.401      0.169      0.631        0.5      0.526      0.133\n",
            "        baseball glove        128          7          1      0.519       0.58      0.327      0.687      0.286      0.455      0.328\n",
            "            skateboard        128          5      0.729        0.8      0.862      0.631      0.599        0.6      0.604      0.379\n",
            "         tennis racket        128          7       0.57      0.714      0.645      0.448      0.608      0.714      0.645      0.412\n",
            "                bottle        128         18      0.469      0.393      0.537      0.357      0.661      0.389      0.543      0.349\n",
            "            wine glass        128         16      0.677      0.938      0.866      0.441       0.53      0.625       0.67      0.334\n",
            "                   cup        128         36      0.777      0.722      0.812      0.466      0.725      0.583      0.762      0.467\n",
            "                  fork        128          6      0.948      0.333      0.425       0.27      0.527      0.167       0.18      0.102\n",
            "                 knife        128         16      0.757      0.587      0.669      0.458       0.79        0.5      0.552       0.34\n",
            "                 spoon        128         22       0.74      0.364      0.559      0.269      0.925      0.364      0.513      0.213\n",
            "                  bowl        128         28      0.766      0.714      0.725      0.559      0.803      0.584      0.665      0.353\n",
            "                banana        128          1      0.408          1      0.995      0.398      0.539          1      0.995      0.497\n",
            "              sandwich        128          2          1          0      0.695      0.536          1          0      0.498      0.448\n",
            "                orange        128          4      0.467          1      0.995      0.693      0.518          1      0.995      0.663\n",
            "              broccoli        128         11      0.462      0.455      0.383      0.259      0.548      0.455      0.384      0.256\n",
            "                carrot        128         24      0.631      0.875       0.77      0.533      0.757      0.909      0.853      0.499\n",
            "               hot dog        128          2      0.555          1      0.995      0.995      0.578          1      0.995      0.796\n",
            "                 pizza        128          5       0.89        0.8      0.962      0.796          1      0.778      0.962      0.766\n",
            "                 donut        128         14      0.695          1      0.893      0.772      0.704          1      0.893      0.696\n",
            "                  cake        128          4      0.826          1      0.995       0.92      0.862          1      0.995      0.846\n",
            "                 chair        128         35       0.53      0.571      0.613      0.336       0.67        0.6      0.538      0.271\n",
            "                 couch        128          6      0.972      0.667      0.833      0.627          1       0.62      0.696      0.394\n",
            "          potted plant        128         14        0.7      0.857      0.883      0.552      0.836      0.857      0.883      0.473\n",
            "                   bed        128          3      0.979      0.667       0.83      0.366          1          0       0.83      0.373\n",
            "          dining table        128         13      0.775      0.308      0.505      0.364      0.644      0.231       0.25     0.0804\n",
            "                toilet        128          2      0.836          1      0.995      0.846      0.887          1      0.995      0.797\n",
            "                    tv        128          2        0.6          1      0.995      0.846      0.655          1      0.995      0.896\n",
            "                laptop        128          3      0.822      0.333      0.445      0.307          1          0      0.392       0.12\n",
            "                 mouse        128          2          1          0          0          0          1          0          0          0\n",
            "                remote        128          8      0.745        0.5       0.62      0.459      0.821        0.5      0.624      0.449\n",
            "            cell phone        128          8      0.686      0.375      0.502      0.272      0.488       0.25       0.28      0.132\n",
            "             microwave        128          3      0.831          1      0.995      0.722      0.867          1      0.995      0.592\n",
            "                  oven        128          5      0.439        0.4      0.435      0.294      0.823        0.6      0.645      0.418\n",
            "                  sink        128          6      0.677        0.5      0.565      0.448      0.722        0.5       0.46      0.362\n",
            "          refrigerator        128          5      0.533        0.8      0.783      0.524      0.558        0.8      0.783      0.527\n",
            "                  book        128         29      0.732      0.379      0.423      0.196       0.69      0.207       0.38      0.131\n",
            "                 clock        128          9      0.889      0.778      0.917      0.677      0.908      0.778      0.875      0.604\n",
            "                  vase        128          2      0.375          1      0.995      0.995      0.455          1      0.995      0.796\n",
            "              scissors        128          1          1          0     0.0166    0.00166          1          0          0          0\n",
            "            teddy bear        128         21      0.813      0.829      0.841      0.457      0.826      0.678      0.786      0.422\n",
            "            toothbrush        128          5      0.806          1      0.995      0.733      0.991          1      0.995      0.628\n",
            "Results saved to \u001b[1mruns/train-seg/exp\u001b[0m\n"
          ]
        }
      ],
      "source": [
        "# Train YOLOv5s on COCO128 for 3 epochs\n",
        "!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "15glLzbQx5u0"
      },
      "source": [
        "# 4. Visualize"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nWOsI5wJR1o3"
      },
      "source": [
        "## Comet Logging and Visualization 🌟 NEW\n",
        "\n",
        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
        "\n",
        "Getting started is easy:\n",
        "```shell\n",
        "pip install comet_ml  # 1. install\n",
        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
        "```\n",
        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
        "\n",
        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Lay2WsTjNJzP"
      },
      "source": [
        "## ClearML Logging and Automation 🌟 NEW\n",
        "\n",
        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
        "\n",
        "- `pip install clearml`\n",
        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
        "\n",
        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
        "\n",
        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) for details!\n",
        "\n",
        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-WPvRbS5Swl6"
      },
      "source": [
        "## Local Logging\n",
        "\n",
        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
        "\n",
        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
        "\n",
        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Zelyeqbyt3GD"
      },
      "source": [
        "# Environments\n",
        "\n",
        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
        "\n",
        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)\n",
        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)\n",
        "- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6Qu7Iesl0p54"
      },
      "source": [
        "# Status\n",
        "\n",
        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
        "\n",
        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IEijrePND_2I"
      },
      "source": [
        "# Appendix\n",
        "\n",
        "Additional content below."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GMusP4OAxFu6"
      },
      "outputs": [],
      "source": [
        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
        "import torch\n",
        "\n",
        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg', force_reload=True, trust_repo=True)  # or yolov5n - yolov5x6 or custom\n",
        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
        "results = model(im)  # inference\n",
        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "YOLOv5 Segmentation Tutorial",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.7.12"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}