File size: 19,056 Bytes
92894b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""Plotting utils."""

import contextlib
import math
import os
from copy import copy
from pathlib import Path

import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw
from scipy.ndimage.filters import gaussian_filter1d
from ultralytics.utils.plotting import Annotator

from utils import TryExcept, threaded
from utils.general import LOGGER, clip_boxes, increment_path, xywh2xyxy, xyxy2xywh
from utils.metrics import fitness

# Settings
RANK = int(os.getenv("RANK", -1))
matplotlib.rc("font", **{"size": 11})
matplotlib.use("Agg")  # for writing to files only


class Colors:
    # Ultralytics color palette https://ultralytics.com/
    def __init__(self):
        # hex = matplotlib.colors.TABLEAU_COLORS.values()
        hexs = (
            "FF3838",
            "FF9D97",
            "FF701F",
            "FFB21D",
            "CFD231",
            "48F90A",
            "92CC17",
            "3DDB86",
            "1A9334",
            "00D4BB",
            "2C99A8",
            "00C2FF",
            "344593",
            "6473FF",
            "0018EC",
            "8438FF",
            "520085",
            "CB38FF",
            "FF95C8",
            "FF37C7",
        )
        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
        self.n = len(self.palette)

    def __call__(self, i, bgr=False):
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):  # rgb order (PIL)
        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))


colors = Colors()  # create instance for 'from utils.plots import colors'


def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
    """
    x:              Features to be visualized
    module_type:    Module type
    stage:          Module stage within model
    n:              Maximum number of feature maps to plot
    save_dir:       Directory to save results
    """
    if ("Detect" not in module_type) and (
        "Segment" not in module_type
    ):  # 'Detect' for Object Detect task,'Segment' for Segment task
        batch, channels, height, width = x.shape  # batch, channels, height, width
        if height > 1 and width > 1:
            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
            n = min(n, channels)  # number of plots
            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
            ax = ax.ravel()
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(n):
                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
                ax[i].axis("off")

            LOGGER.info(f"Saving {f}... ({n}/{channels})")
            plt.savefig(f, dpi=300, bbox_inches="tight")
            plt.close()
            np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())  # npy save


def hist2d(x, y, n=100):
    # 2d histogram used in labels.png and evolve.png
    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
    return np.log(hist[xidx, yidx])


def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
    from scipy.signal import butter, filtfilt

    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
    def butter_lowpass(cutoff, fs, order):
        nyq = 0.5 * fs
        normal_cutoff = cutoff / nyq
        return butter(order, normal_cutoff, btype="low", analog=False)

    b, a = butter_lowpass(cutoff, fs, order=order)
    return filtfilt(b, a, data)  # forward-backward filter


def output_to_target(output, max_det=300):
    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1))
    return torch.cat(targets, 0).numpy()


@threaded
def plot_images(images, targets, paths=None, fname="images.jpg", names=None):
    # Plot image grid with labels
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(targets, torch.Tensor):
        targets = targets.cpu().numpy()

    max_size = 1920  # max image size
    max_subplots = 16  # max image subplots, i.e. 4x4
    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs**0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i, im in enumerate(images):
        if i == max_subplots:  # if last batch has fewer images than we expect
            break
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        im = im.transpose(1, 2, 0)
        mosaic[y : y + h, x : x + w, :] = im

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
    for i in range(i + 1):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
        if paths:
            annotator.text([x + 5, y + 5], text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
        if len(targets) > 0:
            ti = targets[targets[:, 0] == i]  # image targets
            boxes = xywh2xyxy(ti[:, 2:6]).T
            classes = ti[:, 1].astype("int")
            labels = ti.shape[1] == 6  # labels if no conf column
            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)

            if boxes.shape[1]:
                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
                    boxes[[0, 2]] *= w  # scale to pixels
                    boxes[[1, 3]] *= h
                elif scale < 1:  # absolute coords need scale if image scales
                    boxes *= scale
            boxes[[0, 2]] += x
            boxes[[1, 3]] += y
            for j, box in enumerate(boxes.T.tolist()):
                cls = classes[j]
                color = colors(cls)
                cls = names[cls] if names else cls
                if labels or conf[j] > 0.25:  # 0.25 conf thresh
                    label = f"{cls}" if labels else f"{cls} {conf[j]:.1f}"
                    annotator.box_label(box, label, color=color)
    annotator.im.save(fname)  # save


def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=""):
    # Plot LR simulating training for full epochs
    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
    y = []
    for _ in range(epochs):
        scheduler.step()
        y.append(optimizer.param_groups[0]["lr"])
    plt.plot(y, ".-", label="LR")
    plt.xlabel("epoch")
    plt.ylabel("LR")
    plt.grid()
    plt.xlim(0, epochs)
    plt.ylim(0)
    plt.savefig(Path(save_dir) / "LR.png", dpi=200)
    plt.close()


def plot_val_txt():  # from utils.plots import *; plot_val()
    # Plot val.txt histograms
    x = np.loadtxt("val.txt", dtype=np.float32)
    box = xyxy2xywh(x[:, :4])
    cx, cy = box[:, 0], box[:, 1]

    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
    ax.set_aspect("equal")
    plt.savefig("hist2d.png", dpi=300)

    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
    ax[0].hist(cx, bins=600)
    ax[1].hist(cy, bins=600)
    plt.savefig("hist1d.png", dpi=200)


def plot_targets_txt():  # from utils.plots import *; plot_targets_txt()
    # Plot targets.txt histograms
    x = np.loadtxt("targets.txt", dtype=np.float32).T
    s = ["x targets", "y targets", "width targets", "height targets"]
    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
    ax = ax.ravel()
    for i in range(4):
        ax[i].hist(x[i], bins=100, label=f"{x[i].mean():.3g} +/- {x[i].std():.3g}")
        ax[i].legend()
        ax[i].set_title(s[i])
    plt.savefig("targets.jpg", dpi=200)


def plot_val_study(file="", dir="", x=None):  # from utils.plots import *; plot_val_study()
    # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
    save_dir = Path(file).parent if file else Path(dir)
    plot2 = False  # plot additional results
    if plot2:
        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()

    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
    # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
    for f in sorted(save_dir.glob("study*.txt")):
        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
        x = np.arange(y.shape[1]) if x is None else np.array(x)
        if plot2:
            s = ["P", "R", "mAP@.5", "mAP@.5:.95", "t_preprocess (ms/img)", "t_inference (ms/img)", "t_NMS (ms/img)"]
            for i in range(7):
                ax[i].plot(x, y[i], ".-", linewidth=2, markersize=8)
                ax[i].set_title(s[i])

        j = y[3].argmax() + 1
        ax2.plot(
            y[5, 1:j],
            y[3, 1:j] * 1e2,
            ".-",
            linewidth=2,
            markersize=8,
            label=f.stem.replace("study_coco_", "").replace("yolo", "YOLO"),
        )

    ax2.plot(
        1e3 / np.array([209, 140, 97, 58, 35, 18]),
        [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
        "k.-",
        linewidth=2,
        markersize=8,
        alpha=0.25,
        label="EfficientDet",
    )

    ax2.grid(alpha=0.2)
    ax2.set_yticks(np.arange(20, 60, 5))
    ax2.set_xlim(0, 57)
    ax2.set_ylim(25, 55)
    ax2.set_xlabel("GPU Speed (ms/img)")
    ax2.set_ylabel("COCO AP val")
    ax2.legend(loc="lower right")
    f = save_dir / "study.png"
    print(f"Saving {f}...")
    plt.savefig(f, dpi=300)


@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(labels, names=(), save_dir=Path("")):
    # plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
    nc = int(c.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=["x", "y", "width", "height"])

    # seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
    plt.close()

    # matplotlib labels
    matplotlib.use("svg")  # faster
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    with contextlib.suppress(Exception):  # color histogram bars by class
        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
    ax[0].set_ylabel("instances")
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel("classes")
    sn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)

    # rectangles
    labels[:, 1:3] = 0.5  # center
    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
    for cls, *box in labels[:1000]:
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis("off")

    for a in [0, 1, 2, 3]:
        for s in ["top", "right", "left", "bottom"]:
            ax[a].spines[s].set_visible(False)

    plt.savefig(save_dir / "labels.jpg", dpi=200)
    matplotlib.use("Agg")
    plt.close()


def imshow_cls(im, labels=None, pred=None, names=None, nmax=25, verbose=False, f=Path("images.jpg")):
    # Show classification image grid with labels (optional) and predictions (optional)
    from utils.augmentations import denormalize

    names = names or [f"class{i}" for i in range(1000)]
    blocks = torch.chunk(
        denormalize(im.clone()).cpu().float(), len(im), dim=0
    )  # select batch index 0, block by channels
    n = min(len(blocks), nmax)  # number of plots
    m = min(8, round(n**0.5))  # 8 x 8 default
    fig, ax = plt.subplots(math.ceil(n / m), m)  # 8 rows x n/8 cols
    ax = ax.ravel() if m > 1 else [ax]
    # plt.subplots_adjust(wspace=0.05, hspace=0.05)
    for i in range(n):
        ax[i].imshow(blocks[i].squeeze().permute((1, 2, 0)).numpy().clip(0.0, 1.0))
        ax[i].axis("off")
        if labels is not None:
            s = names[labels[i]] + (f"—{names[pred[i]]}" if pred is not None else "")
            ax[i].set_title(s, fontsize=8, verticalalignment="top")
    plt.savefig(f, dpi=300, bbox_inches="tight")
    plt.close()
    if verbose:
        LOGGER.info(f"Saving {f}")
        if labels is not None:
            LOGGER.info("True:     " + " ".join(f"{names[i]:3s}" for i in labels[:nmax]))
        if pred is not None:
            LOGGER.info("Predicted:" + " ".join(f"{names[i]:3s}" for i in pred[:nmax]))
    return f


def plot_evolve(evolve_csv="path/to/evolve.csv"):  # from utils.plots import *; plot_evolve()
    # Plot evolve.csv hyp evolution results
    evolve_csv = Path(evolve_csv)
    data = pd.read_csv(evolve_csv)
    keys = [x.strip() for x in data.columns]
    x = data.values
    f = fitness(x)
    j = np.argmax(f)  # max fitness index
    plt.figure(figsize=(10, 12), tight_layout=True)
    matplotlib.rc("font", **{"size": 8})
    print(f"Best results from row {j} of {evolve_csv}:")
    for i, k in enumerate(keys[7:]):
        v = x[:, 7 + i]
        mu = v[j]  # best single result
        plt.subplot(6, 5, i + 1)
        plt.scatter(v, f, c=hist2d(v, f, 20), cmap="viridis", alpha=0.8, edgecolors="none")
        plt.plot(mu, f.max(), "k+", markersize=15)
        plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})  # limit to 40 characters
        if i % 5 != 0:
            plt.yticks([])
        print(f"{k:>15}: {mu:.3g}")
    f = evolve_csv.with_suffix(".png")  # filename
    plt.savefig(f, dpi=200)
    plt.close()
    print(f"Saved {f}")


def plot_results(file="path/to/results.csv", dir=""):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob("results*.csv"))
    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j].astype("float")
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)  # actual results
                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)  # smoothing line
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.info(f"Warning: Plotting error for {f}: {e}")
    ax[1].legend()
    fig.savefig(save_dir / "results.png", dpi=200)
    plt.close()


def profile_idetection(start=0, stop=0, labels=(), save_dir=""):
    # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
    s = ["Images", "Free Storage (GB)", "RAM Usage (GB)", "Battery", "dt_raw (ms)", "dt_smooth (ms)", "real-world FPS"]
    files = list(Path(save_dir).glob("frames*.txt"))
    for fi, f in enumerate(files):
        try:
            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
            n = results.shape[1]  # number of rows
            x = np.arange(start, min(stop, n) if stop else n)
            results = results[:, x]
            t = results[0] - results[0].min()  # set t0=0s
            results[0] = x
            for i, a in enumerate(ax):
                if i < len(results):
                    label = labels[fi] if len(labels) else f.stem.replace("frames_", "")
                    a.plot(t, results[i], marker=".", label=label, linewidth=1, markersize=5)
                    a.set_title(s[i])
                    a.set_xlabel("time (s)")
                    # if fi == len(files) - 1:
                    #     a.set_ylim(bottom=0)
                    for side in ["top", "right"]:
                        a.spines[side].set_visible(False)
                else:
                    a.remove()
        except Exception as e:
            print(f"Warning: Plotting error for {f}; {e}")
    ax[1].legend()
    plt.savefig(Path(save_dir) / "idetection_profile.png", dpi=200)


def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
    # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
    xyxy = torch.tensor(xyxy).view(-1, 4)
    b = xyxy2xywh(xyxy)  # boxes
    if square:
        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = xywh2xyxy(b).long()
    clip_boxes(xyxy, im.shape)
    crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
    if save:
        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
        f = str(increment_path(file).with_suffix(".jpg"))
        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
    return crop