File size: 5,302 Bytes
125214f
 
 
 
 
 
 
 
 
 
 
1812270
eff41fa
125214f
 
1948116
 
eaa7a81
1948116
eaa7a81
1948116
8bd4ecd
1948116
 
 
 
 
 
 
 
 
 
d4b85b8
 
1948116
 
5667733
 
29f316e
1948116
 
 
 
d4b85b8
1948116
 
 
 
7316948
0bac0de
 
 
8cedf13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948116
 
 
 
 
 
7c8c861
6a338ab
11781a6
1948116
 
 
3db717c
 
 
 
 
 
 
 
 
 
5ac6aec
 
3db717c
 
 
 
 
5ac6aec
3db717c
1948116
7c8c861
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.utilities.gen_utilities import free_gpu_resources
from my_model.state_manager import StateManager


class InferenceRunner(StateManager):
    def __init__(self):
        
        super().__init__()
        self.initialize_state()
        self.sample_images = [
            "Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg"]

    def answer_question(self, caption, detected_objects_str, question, model):
        free_gpu_resources()
        answer = model.generate_answer(question, caption, detected_objects_str)
        free_gpu_resources()
        return answer


    def image_qa_app(self, kbvqa):
        # Display sample images as clickable thumbnails
        self.col1.write("Choose from sample images:")
        cols = self.col1.columns(len(self.sample_images))
        for idx, sample_image_path in enumerate(self.sample_images):
            with cols[idx]:
                image = Image.open(sample_image_path)
                image_for_display = self.resize_image(sample_image_path, 80, 80)
                st.image(image_for_display)
                if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
                    self.process_new_image(sample_image_path, image, kbvqa)

        # Image uploader
        uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
        if uploaded_image is not None:
            self.process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)

        # Display and interact with each uploaded/selected image
        with self.col2:
            for image_key, image_data in self.get_images_data().items():
                with st.container():
                    nested_col21, nested_col22 = st.columns([0.7, 0.3])
                    image_for_display = self.resize_image(image_data['image'], 600)
                    nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
                    if not image_data['analysis_done']:
                        nested_col22.text("Please click 'Analyze Image'..")
                        if nested_col22.button('Analyze Image', key=f'analyze_{image_key}'):
                            caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'], kbvqa)
                            self.update_image_data(image_key, caption, detected_objects_str, True)
        
                    # Initialize qa_history for each image
                    qa_history = image_data.get('qa_history', [])
        
                    if image_data['analysis_done']:
                        question = nested_col22.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
                        if nested_col22.button('Get Answer', key=f'answer_{image_key}'):
                            if question not in [q for q, _ in qa_history]:
                                answer = self.answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
                                self.add_to_qa_history(image_key, question, answer)
                            else: nested_col22.warning("This questions has already been answered.")
        
                    # Display Q&A history for each image
                    for q, a in qa_history:
                        nested_col22.text(f"Q: {q}\nA: {a}\n")


    def run_inference(self):
        self.set_up_widgets()
        st.session_state['settings_changed'] = self.has_state_changed()
        if st.session_state['settings_changed']:
            self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
           

        st.session_state.button_label = "Reload Model" if self.is_model_loaded() and self.settings_changed else "Load Model"
        
        if st.session_state.method == "Fine-Tuned Model":
            with st.container():
                nested_col11, nested_col12 = st.columns([0.5, 0.5])
                if nested_col11.button(st.session_state.button_label):
                    if st.session_state.button_label == "Load Model":
                        if self.is_model_loaded():
                            free_gpu_resources()
                            self.col1.text("Model already loaded and no settings were changed:)")
                        else:
                            free_gpu_resources()
                            self.load_model()
                    else:
                        free_gpu_resources()
                        self.reload_detection_model()
                if nested_col12.button("Force Reload"):
                    force_reload_model()
                    
                if self.is_model_loaded() and st.session_state.kbvqa.all_models_loaded:
                    free_gpu_resources()
                    self.image_qa_app(self.get_model())
        else:
            self.col1.warning(f'Model using {st.session_state.method} is not deployed yet, will be ready later.')