File size: 4,546 Bytes
38167d4 f0f4b86 78040a5 10892df 38167d4 10892df ba3027e 38167d4 ba3027e d6bb045 38167d4 10892df 8a5ab3e 38167d4 ba3027e 38167d4 8a5ab3e 38167d4 ba3027e cb8b3fe 810a2b0 f28eb9c 38167d4 8a5ab3e 38167d4 ba3027e 8a5ab3e 38167d4 8a5ab3e 82d483e ba3027e 8a5ab3e 838749f 58b59bc 838749f bca7fc0 3afdc18 838749f 41361e7 6c04fe8 38167d4 8a5ab3e 38167d4 ba3027e 8a5ab3e 38167d4 8a5ab3e 38167d4 ba3027e e0f05ce 38167d4 78040a5 38167d4 8a5ab3e 38167d4 ba3027e e0f05ce cb8b3fe e8eea71 e0f05ce f0f4b86 38167d4 8a5ab3e 38167d4 ba3027e e0f05ce 38167d4 ba3027e 38167d4 8a5ab3e 38167d4 ba3027e 8a5ab3e 38167d4 8a5ab3e 38167d4 8a5ab3e 38167d4 ba3027e 8a5ab3e 38167d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import pandas as pd
import streamlit as st
from my_model.tabs.run_inference import InferenceRunner
from my_model.tabs.finetuning_evaluation import KBVQAEvaluator
from my_model.state_manager import StateManager
class UIManager():
"""Manages the user interface for the Streamlit application."""
def __init__(self):
"""Initializes the UIManager with predefined tabs."""
self.tabs = {
"Home": self.display_home,
"Dataset Analysis": self.display_dataset_analysis,
"Finetuning and Evaluation Results": self.display_finetuning_evaluation,
"Run Inference": self.display_run_inference,
"Dissertation Report": self.display_dissertation_report,
"Code": self.display_code,
"More Pages will follow .. ": self.display_placeholder
}
state_manager = StateManager()
state_manager.initialize_state()
def add_tab(self, tab_name, display_function):
"""Adds a new tab to the UI."""
self.tabs[tab_name] = display_function
def display_sidebar(self):
"""Displays the sidebar for navigation."""
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", list(self.tabs.keys()), disabled=st.session_state['loading_in_progress'])
return selection
def display_selected_page(self, selection):
"""Displays the selected page based on user's choice."""
if selection in self.tabs:
self.tabs[selection]()
def display_home(self):
"""Displays the Home page of the application."""
st.title('MultiModal Learning for Visual Question Answering using World Knowledge')
st.text('')
st.header('(Knowledge-Based Visual Question Answering)')
st.text('')
st.text('')
st.text('')
st.write("""\n\n\n\nThis is an interactive application developed to demonstrate my project as part of the dissertation for Masters degree in Artificial Intelligence at the [University of Bath](https://www.bath.ac.uk/).
\n\n\nDeveloped by: [Mohammed H AlHaj](https://www.linkedin.com/in/m7mdal7aj) | Dissertation Supervisor: [Andreas Theophilou](https://researchportal.bath.ac.uk/en/persons/andreas-theophilou)
\n\nFurther details will be updated later . .""")
def display_dataset_analysis(self):
"""Displays the Dataset Analysis page."""
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
def display_finetuning_evaluation(self):
"""Displays the Finetuning and Evaluation Results page."""
st.title("Finetuning and Evaluation Results")
st.write("This page demonstrates the fine-tuning and model evaluation results")
st.write("\n")
evaluator = KBVQEvaluator()
evaluator.run()
def display_run_inference(self):
"""Displays the Run Inference page."""
st.title("Run Inference")
st.write("Please note that this is not a general purpose model, it is specifically trained on [OK-VQA Dataset](https://okvqa.allenai.org/) and desgined to give short and direct answers to the given questions about the given image.")
st.write("\n")
inference_runner = InferenceRunner()
inference_runner.run_inference()
def display_dissertation_report(self):
"""Displays the Dissertation Report page."""
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Error handling for file access should be considered here
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
def display_code(self):
"""Displays the Code page with a link to the project's code repository."""
st.title("Code")
st.markdown("You can view the code for this project on HuggingFace Space files page.")
st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True)
def display_placeholder(self):
"""Displays a placeholder for future content."""
st.title("Stay Tuned")
st.write("This is a Place Holder until the contents are uploaded.")
|