File size: 18,785 Bytes
92894b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import glob
import json
import logging
import os
import sys
from pathlib import Path
logger = logging.getLogger(__name__)
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
try:
import comet_ml
# Project Configuration
config = comet_ml.config.get_config()
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
except ImportError:
comet_ml = None
COMET_PROJECT_NAME = None
import PIL
import torch
import torchvision.transforms as T
import yaml
from utils.dataloaders import img2label_paths
from utils.general import check_dataset, scale_boxes, xywh2xyxy
from utils.metrics import box_iou
COMET_PREFIX = "comet://"
COMET_MODE = os.getenv("COMET_MODE", "online")
# Model Saving Settings
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
# Dataset Artifact Settings
COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true"
# Evaluation Settings
COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true"
COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true"
COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100))
# Confusion Matrix Settings
CONF_THRES = float(os.getenv("CONF_THRES", 0.001))
IOU_THRES = float(os.getenv("IOU_THRES", 0.6))
# Batch Logging Settings
COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true"
COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1)
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1)
COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true"
RANK = int(os.getenv("RANK", -1))
to_pil = T.ToPILImage()
class CometLogger:
"""Log metrics, parameters, source code, models and much more with Comet."""
def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None:
self.job_type = job_type
self.opt = opt
self.hyp = hyp
# Comet Flags
self.comet_mode = COMET_MODE
self.save_model = opt.save_period > -1
self.model_name = COMET_MODEL_NAME
# Batch Logging Settings
self.log_batch_metrics = COMET_LOG_BATCH_METRICS
self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
# Dataset Artifact Settings
self.upload_dataset = self.opt.upload_dataset or COMET_UPLOAD_DATASET
self.resume = self.opt.resume
# Default parameters to pass to Experiment objects
self.default_experiment_kwargs = {
"log_code": False,
"log_env_gpu": True,
"log_env_cpu": True,
"project_name": COMET_PROJECT_NAME,
}
self.default_experiment_kwargs.update(experiment_kwargs)
self.experiment = self._get_experiment(self.comet_mode, run_id)
self.experiment.set_name(self.opt.name)
self.data_dict = self.check_dataset(self.opt.data)
self.class_names = self.data_dict["names"]
self.num_classes = self.data_dict["nc"]
self.logged_images_count = 0
self.max_images = COMET_MAX_IMAGE_UPLOADS
if run_id is None:
self.experiment.log_other("Created from", "YOLOv5")
if not isinstance(self.experiment, comet_ml.OfflineExperiment):
workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:]
self.experiment.log_other(
"Run Path",
f"{workspace}/{project_name}/{experiment_id}",
)
self.log_parameters(vars(opt))
self.log_parameters(self.opt.hyp)
self.log_asset_data(
self.opt.hyp,
name="hyperparameters.json",
metadata={"type": "hyp-config-file"},
)
self.log_asset(
f"{self.opt.save_dir}/opt.yaml",
metadata={"type": "opt-config-file"},
)
self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
if hasattr(self.opt, "conf_thres"):
self.conf_thres = self.opt.conf_thres
else:
self.conf_thres = CONF_THRES
if hasattr(self.opt, "iou_thres"):
self.iou_thres = self.opt.iou_thres
else:
self.iou_thres = IOU_THRES
self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres})
self.comet_log_predictions = COMET_LOG_PREDICTIONS
if self.opt.bbox_interval == -1:
self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
else:
self.comet_log_prediction_interval = self.opt.bbox_interval
if self.comet_log_predictions:
self.metadata_dict = {}
self.logged_image_names = []
self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
self.experiment.log_others(
{
"comet_mode": COMET_MODE,
"comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS,
"comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS,
"comet_log_batch_metrics": COMET_LOG_BATCH_METRICS,
"comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX,
"comet_model_name": COMET_MODEL_NAME,
}
)
# Check if running the Experiment with the Comet Optimizer
if hasattr(self.opt, "comet_optimizer_id"):
self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id)
self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective)
self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric)
self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp))
def _get_experiment(self, mode, experiment_id=None):
if mode == "offline":
return (
comet_ml.ExistingOfflineExperiment(
previous_experiment=experiment_id,
**self.default_experiment_kwargs,
)
if experiment_id is not None
else comet_ml.OfflineExperiment(
**self.default_experiment_kwargs,
)
)
try:
if experiment_id is not None:
return comet_ml.ExistingExperiment(
previous_experiment=experiment_id,
**self.default_experiment_kwargs,
)
return comet_ml.Experiment(**self.default_experiment_kwargs)
except ValueError:
logger.warning(
"COMET WARNING: "
"Comet credentials have not been set. "
"Comet will default to offline logging. "
"Please set your credentials to enable online logging."
)
return self._get_experiment("offline", experiment_id)
return
def log_metrics(self, log_dict, **kwargs):
self.experiment.log_metrics(log_dict, **kwargs)
def log_parameters(self, log_dict, **kwargs):
self.experiment.log_parameters(log_dict, **kwargs)
def log_asset(self, asset_path, **kwargs):
self.experiment.log_asset(asset_path, **kwargs)
def log_asset_data(self, asset, **kwargs):
self.experiment.log_asset_data(asset, **kwargs)
def log_image(self, img, **kwargs):
self.experiment.log_image(img, **kwargs)
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
if not self.save_model:
return
model_metadata = {
"fitness_score": fitness_score[-1],
"epochs_trained": epoch + 1,
"save_period": opt.save_period,
"total_epochs": opt.epochs,
}
model_files = glob.glob(f"{path}/*.pt")
for model_path in model_files:
name = Path(model_path).name
self.experiment.log_model(
self.model_name,
file_or_folder=model_path,
file_name=name,
metadata=model_metadata,
overwrite=True,
)
def check_dataset(self, data_file):
with open(data_file) as f:
data_config = yaml.safe_load(f)
path = data_config.get("path")
if path and path.startswith(COMET_PREFIX):
path = data_config["path"].replace(COMET_PREFIX, "")
return self.download_dataset_artifact(path)
self.log_asset(self.opt.data, metadata={"type": "data-config-file"})
return check_dataset(data_file)
def log_predictions(self, image, labelsn, path, shape, predn):
if self.logged_images_count >= self.max_images:
return
detections = predn[predn[:, 4] > self.conf_thres]
iou = box_iou(labelsn[:, 1:], detections[:, :4])
mask, _ = torch.where(iou > self.iou_thres)
if len(mask) == 0:
return
filtered_detections = detections[mask]
filtered_labels = labelsn[mask]
image_id = path.split("/")[-1].split(".")[0]
image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}"
if image_name not in self.logged_image_names:
native_scale_image = PIL.Image.open(path)
self.log_image(native_scale_image, name=image_name)
self.logged_image_names.append(image_name)
metadata = [
{
"label": f"{self.class_names[int(cls)]}-gt",
"score": 100,
"box": {"x": xyxy[0], "y": xyxy[1], "x2": xyxy[2], "y2": xyxy[3]},
}
for cls, *xyxy in filtered_labels.tolist()
]
metadata.extend(
{
"label": f"{self.class_names[int(cls)]}",
"score": conf * 100,
"box": {"x": xyxy[0], "y": xyxy[1], "x2": xyxy[2], "y2": xyxy[3]},
}
for *xyxy, conf, cls in filtered_detections.tolist()
)
self.metadata_dict[image_name] = metadata
self.logged_images_count += 1
return
def preprocess_prediction(self, image, labels, shape, pred):
nl, _ = labels.shape[0], pred.shape[0]
# Predictions
if self.opt.single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
labelsn = None
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
return predn, labelsn
def add_assets_to_artifact(self, artifact, path, asset_path, split):
img_paths = sorted(glob.glob(f"{asset_path}/*"))
label_paths = img2label_paths(img_paths)
for image_file, label_file in zip(img_paths, label_paths):
image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
try:
artifact.add(
image_file,
logical_path=image_logical_path,
metadata={"split": split},
)
artifact.add(
label_file,
logical_path=label_logical_path,
metadata={"split": split},
)
except ValueError as e:
logger.error("COMET ERROR: Error adding file to Artifact. Skipping file.")
logger.error(f"COMET ERROR: {e}")
continue
return artifact
def upload_dataset_artifact(self):
dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset")
path = str((ROOT / Path(self.data_dict["path"])).resolve())
metadata = self.data_dict.copy()
for key in ["train", "val", "test"]:
split_path = metadata.get(key)
if split_path is not None:
metadata[key] = split_path.replace(path, "")
artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata)
for key in metadata.keys():
if key in ["train", "val", "test"]:
if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
continue
asset_path = self.data_dict.get(key)
if asset_path is not None:
artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
self.experiment.log_artifact(artifact)
return
def download_dataset_artifact(self, artifact_path):
logged_artifact = self.experiment.get_artifact(artifact_path)
artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
logged_artifact.download(artifact_save_dir)
metadata = logged_artifact.metadata
data_dict = metadata.copy()
data_dict["path"] = artifact_save_dir
metadata_names = metadata.get("names")
if isinstance(metadata_names, dict):
data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()}
elif isinstance(metadata_names, list):
data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
else:
raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
return self.update_data_paths(data_dict)
def update_data_paths(self, data_dict):
path = data_dict.get("path", "")
for split in ["train", "val", "test"]:
if data_dict.get(split):
split_path = data_dict.get(split)
data_dict[split] = (
f"{path}/{split_path}" if isinstance(split, str) else [f"{path}/{x}" for x in split_path]
)
return data_dict
def on_pretrain_routine_end(self, paths):
if self.opt.resume:
return
for path in paths:
self.log_asset(str(path))
if self.upload_dataset and not self.resume:
self.upload_dataset_artifact()
return
def on_train_start(self):
self.log_parameters(self.hyp)
def on_train_epoch_start(self):
return
def on_train_epoch_end(self, epoch):
self.experiment.curr_epoch = epoch
return
def on_train_batch_start(self):
return
def on_train_batch_end(self, log_dict, step):
self.experiment.curr_step = step
if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
self.log_metrics(log_dict, step=step)
return
def on_train_end(self, files, save_dir, last, best, epoch, results):
if self.comet_log_predictions:
curr_epoch = self.experiment.curr_epoch
self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch)
for f in files:
self.log_asset(f, metadata={"epoch": epoch})
self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch})
if not self.opt.evolve:
model_path = str(best if best.exists() else last)
name = Path(model_path).name
if self.save_model:
self.experiment.log_model(
self.model_name,
file_or_folder=model_path,
file_name=name,
overwrite=True,
)
# Check if running Experiment with Comet Optimizer
if hasattr(self.opt, "comet_optimizer_id"):
metric = results.get(self.opt.comet_optimizer_metric)
self.experiment.log_other("optimizer_metric_value", metric)
self.finish_run()
def on_val_start(self):
return
def on_val_batch_start(self):
return
def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
return
for si, pred in enumerate(outputs):
if len(pred) == 0:
continue
image = images[si]
labels = targets[targets[:, 0] == si, 1:]
shape = shapes[si]
path = paths[si]
predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
if labelsn is not None:
self.log_predictions(image, labelsn, path, shape, predn)
return
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
if self.comet_log_per_class_metrics and self.num_classes > 1:
for i, c in enumerate(ap_class):
class_name = self.class_names[c]
self.experiment.log_metrics(
{
"mAP@.5": ap50[i],
"mAP@.5:.95": ap[i],
"precision": p[i],
"recall": r[i],
"f1": f1[i],
"true_positives": tp[i],
"false_positives": fp[i],
"support": nt[c],
},
prefix=class_name,
)
if self.comet_log_confusion_matrix:
epoch = self.experiment.curr_epoch
class_names = list(self.class_names.values())
class_names.append("background")
num_classes = len(class_names)
self.experiment.log_confusion_matrix(
matrix=confusion_matrix.matrix,
max_categories=num_classes,
labels=class_names,
epoch=epoch,
column_label="Actual Category",
row_label="Predicted Category",
file_name=f"confusion-matrix-epoch-{epoch}.json",
)
def on_fit_epoch_end(self, result, epoch):
self.log_metrics(result, epoch=epoch)
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
def on_params_update(self, params):
self.log_parameters(params)
def finish_run(self):
self.experiment.end()
|