File size: 4,124 Bytes
59b2635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f09294
59b2635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761dc7e
59b2635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr 
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator

HARM_INTRO = """
The Chinchilla scaling laws focus on optimally scaling training compute but often we also care about inference cost. 
This tool follows [Harm de Vries' blog post](https://www.harmdevries.com/post/model-size-vs-compute-overhead/) and visualizes the tradeoff between training comput and inference cost (i.e. model size). 
"""

### GPU specs:
A100_flops = 312e12
H100_flops = 990e12

### CHINCHILLA PARAMS:
E = 1.62
A = 406.4
B = 410.7
alpha = 0.336
beta = 0.283

Bn = 10**9

G = ((alpha*A)/(beta*B))**(1/(alpha+beta)) 

### FUNCTIONS
def to_flops(N, D):
    return 6 * N * D

def n_opt(C):
    return G * ((C/6) ** (beta / (alpha+beta)))

def d_opt(C):
    return (1/G) * ((C/6) ** (alpha / (alpha+beta)))

def compute_kd(kn):
    frac = (A/B)*(G**(-alpha-beta))    
    kd = (1-((kn**-alpha -1)*frac))**(1/(-beta))
    return kd

def compute_overhead(kn, kd):
    return kn*kd - 1

### PRECOMPUTE CURVE:
kn_min = 0.18
kn_max = 2

kns = np.linspace(kn_min, kn_max, 100)
overheads = []
for kn in kns:
    kd = compute_kd(kn)
    overheads.append(compute_overhead(kn, kd)*100)

def plot_curve(kn, kd):
    fig, ax = plt.subplots(dpi=200, figsize=(5, 3))
    plt.plot(kns, overheads, color="black", zorder=1)
    plt.scatter([kn], [compute_overhead(kn, kd)*100], s=100, marker="o", c="red", label="You are here!", zorder=2)
    plt.scatter([1.0], [0.0], marker="o", s=100, c="blue", label="Chinchilla optimal", zorder=2)
    plt.xlabel("Fraction of Chinchilla optimal model size")
    plt.ylabel("Compute overhead (%)")
    plt.legend(loc="best")
    plt.grid(True, which="both")
    plt.grid(True, which="minor", alpha=0.5)
    ax.yaxis.set_minor_locator(MultipleLocator(10))
    plt.tight_layout()

    return fig


def compute(N, D, gpu_type, gpu_util, n_gpus, gpu_price):
    
    C = to_flops(N * Bn, D * Bn)
    N_opt = n_opt(C)
    D_opt = d_opt(C)

    kn = Bn*N/N_opt
    kd = compute_kd(kn)
    
    fig = plot_curve(kn, kd)

    
    gpu_util = gpu_util/100
    if gpu_type=="H100":
        gpu_flops = H100_flops * gpu_util
    else:
        gpu_flops = A100_flops * gpu_util
    gpu_hours = (C / (gpu_flops * 3600))


    text = f"""\
## Training summary

|Training compute| Training cost | Training time | Total GPU hours |
|:----|:-------|:-------|:-------|
|{C:.2E} TFLOPs | ${(gpu_hours * gpu_price)/1e6:.2f}M | {gpu_hours/(24*n_gpus):.2f} days | {gpu_hours/1_000_000:.2f}M |

## Chinchilla and Training/Inference Trade-off
Optimal model/dataset size for training compute and how it translates to training overhead and inference savings according to Harm's law
|Chinchilla optimal model | Chinchilla optimal dataset | Training overhead | Inference savings|
|:----|:-------|:----|:-------|
| {N_opt/Bn:.2f}B parameters | {D_opt/Bn:.2f}B tokens | {100*compute_overhead(kn, kd):.2f}%| {100 - kn*100:.2f}% |
"""

    return text, fig

with gr.Blocks() as demo:
    gr.Markdown("# Train LLMs")
    
    gr.Markdown("## Training configuration")
    with gr.Row():
       
        N = gr.Number(value=7, label="Model size (in B parameters):")
        D = gr.Number(value=2000, label="Dataset size (in B tokens):")
    
    gr.Markdown("## Cluster configuration")
    with gr.Row():
        n_gpus = gr.Number(value=1000, label="Number of GPUs")
        gpu_type = gr.Dropdown(choices=["A100", "H100"], value="H100", label="GPU type")
        gpu_util = gr.Number(value=50, label="% GPU utilization")
        gpu_price = gr.Number(value=3.00, label="$/GPU/Hour")
    button = gr.Button("Compute!")

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Harm's law")
            plot = gr.Plot(value=plt)
            gr.Markdown(HARM_INTRO)
        
        with gr.Column():
            md = gr.Markdown("")

    button.click(fn=compute, inputs=[N, D, gpu_type, gpu_util, n_gpus, gpu_price], outputs=[md, plot])
    demo.load(fn=compute, inputs=[N, D, gpu_type, gpu_util, n_gpus, gpu_price], outputs=[md, plot])
demo.launch()