File size: 2,737 Bytes
4efbc62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# YOLO-World + EfficientViT SAM

🤗 [HuggingFace Space](https://huggingface.co/spaces/curt-park/yolo-world-with-efficientvit-sam)

![example_0](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/326bde19-d535-4be5-829e-782fce0c1d00)

## Prerequisites
This project is developed and tested on Python3.10.

```bash
# Create and activate a python 3.10 environment.
conda create -n yolo-world-with-efficientvit-sam python=3.10 -y
conda activate yolo-world-with-efficientvit-sam
# Setup packages.
make setup
```

## How to Run
```bash
python app.py
```

Open http://127.0.0.1:7860/ on your web browser.

![example_1](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/9388e4ee-6f71-4428-b17c-d218fd059949)

## Core Components

### YOLO-World
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) is an open-vocabulary object detection model with high efficiency.
On the challenging LVIS dataset, YOLO-World achieves 35.4 AP with 52.0 FPS on V100,
which outperforms many state-of-the-art methods in terms of both accuracy and speed.
![image](https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/8a4a17bd-918d-478a-8451-f58e4a2dce79)
<img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/fce57405-e18d-45f3-bea8-fc3971faf975">

### EfficientViT SAM
[EfficientViT SAM](https://github.com/mit-han-lab/efficientvit) is a new family of accelerated segment anything models.
Thanks to the lightweight and hardware-efficient core building block,
it delivers 48.9× measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing performance.

<img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/9eec003f-47c9-43a5-86b0-82d6689e1bf9">
<img width="1024" src="https://github.com/Curt-Park/yolo-world-with-efficientvit-sam/assets/14961526/d79973bb-0d80-4b64-a175-252de56d0d09">

## Powered By
```
@misc{zhang2024efficientvitsam,
  title={EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss},
  author={Zhuoyang Zhang and Han Cai and Song Han},
  year={2024},
  eprint={2402.05008},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@article{cheng2024yolow,
  title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
  author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
  journal={arXiv preprint arXiv:2401.17270},
  year={2024}
}

@article{cai2022efficientvit,
  title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
  author={Cai, Han and Gan, Chuang and Han, Song},
  journal={arXiv preprint arXiv:2205.14756},
  year={2022}
}
```