File size: 6,118 Bytes
1a92924
 
6b63a3c
1a92924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518b8f3
 
1a92924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334ba02
1a92924
334ba02
1a92924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b63a3c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
from functools import partial
import gradio as gr
from torch.nn import functional as F
from torch import nn
from dataset import get_data_transforms
from PIL import Image
import os

from utils import get_gaussian_kernel

os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
import os
import torch
import cv2
import numpy as np

# # Model-Related Modules
from models import vit_encoder
from models.uad import INP_Former
from models.vision_transformer import Mlp, Aggregation_Block, Prototype_Block


# Configurations
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
parser = argparse.ArgumentParser(description='')
# model info
parser.add_argument('--encoder', type=str, default='dinov2reg_vit_base_14')
parser.add_argument('--input_size', type=int, default=448)
parser.add_argument('--crop_size', type=int, default=392)
parser.add_argument('--INP_num', type=int, default=6)

args = parser.parse_args()


############ Init Model
ckt_path1 = 'weights/Real-IAD/model.pth'
ckt_path2 = "weights/Real-IAD/model.pth"

#
data_transform, _ = get_data_transforms(args.input_size, args.crop_size)

# device
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Adopting a grouping-based reconstruction strategy similar to Dinomaly
target_layers = [2, 3, 4, 5, 6, 7, 8, 9]
fuse_layer_encoder = [[0, 1, 2, 3], [4, 5, 6, 7]]
fuse_layer_decoder = [[0, 1, 2, 3], [4, 5, 6, 7]]

# Encoder info
encoder = vit_encoder.load(args.encoder)
if 'small' in args.encoder:
    embed_dim, num_heads = 384, 6
elif 'base' in args.encoder:
    embed_dim, num_heads = 768, 12
elif 'large' in args.encoder:
    embed_dim, num_heads = 1024, 16
    target_layers = [4, 6, 8, 10, 12, 14, 16, 18]
else:
    raise "Architecture not in small, base, large."

# Model Preparation
Bottleneck = []
INP_Guided_Decoder = []
INP_Extractor = []

# bottleneck
Bottleneck.append(Mlp(embed_dim, embed_dim * 4, embed_dim, drop=0.))
Bottleneck = nn.ModuleList(Bottleneck)

# INP
INP = nn.ParameterList(
    [nn.Parameter(torch.randn(args.INP_num, embed_dim))
     for _ in range(1)])

# INP Extractor
for i in range(1):
    blk = Aggregation_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=4.,
                            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-8))
    INP_Extractor.append(blk)
INP_Extractor = nn.ModuleList(INP_Extractor)

# INP_Guided_Decoder
for i in range(8):
    blk = Prototype_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=4.,
                          qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-8))
    INP_Guided_Decoder.append(blk)
INP_Guided_Decoder = nn.ModuleList(INP_Guided_Decoder)

model = INP_Former(encoder=encoder, bottleneck=Bottleneck, aggregation=INP_Extractor, decoder=INP_Guided_Decoder,
                   target_layers=target_layers, remove_class_token=True, fuse_layer_encoder=fuse_layer_encoder,
                   fuse_layer_decoder=fuse_layer_decoder, prototype_token=INP)
model = model.to(device)

gaussian_kernel = get_gaussian_kernel(kernel_size=5, sigma=4).to(device)


def resize_and_center_crop(image, resize_size=448, crop_size=392):
    # Resize to 448x448
    image_resized = cv2.resize(image, (resize_size, resize_size), interpolation=cv2.INTER_LINEAR)

    # Compute crop coordinates
    start = (resize_size - crop_size) // 2
    end = start + crop_size

    # Center crop to 392x392
    image_cropped = image_resized[start:end, start:end, :]

    return image_cropped

def process_image(image, options):
    # Load the model based on selected options
    if 'Real-IAD' in options:
        model.load_state_dict(torch.load(ckt_path1, map_location=torch.device('cpu')), strict=True)
    elif 'VisA' in options:
        model.load_state_dict(torch.load(ckt_path2, map_location=torch.device('cpu')), strict=True)
    else:
        # Default to 'All' if no valid option is provided
        model.load_state_dict(torch.load(ckt_path1), strict=True)
        print('Invalid option. Defaulting to All.')

    # Ensure image is in RGB mode
    image = image.convert('RGB')



    # Convert PIL image to NumPy array
    np_image = np.array(image)
    image_shape = np_image.shape[0]

    # Convert RGB to BGR for OpenCV
    np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
    np_image = resize_and_center_crop(np_image, resize_size=args.input_size, crop_size=args.crop_size)

    # Preprocess the image and run the model
    input_image = data_transform(image)
    input_image = input_image.to(device)

    with torch.no_grad():
        _ = model(input_image.unsqueeze(0))
        anomaly_map = model.distance
        side = int(model.distance.shape[1] ** 0.5)
        anomaly_map = anomaly_map.reshape([anomaly_map.shape[0], side, side]).contiguous()
        anomaly_map = torch.unsqueeze(anomaly_map, dim=1)
        anomaly_map = F.interpolate(anomaly_map, size=input_image.shape[-1], mode='bilinear', align_corners=True)
        anomaly_map = gaussian_kernel(anomaly_map)

    # Process anomaly map
    anomaly_map = anomaly_map.squeeze().cpu().numpy()
    anomaly_map = (anomaly_map * 255).astype(np.uint8)

    # Apply color map and blend with original image
    heat_map = cv2.applyColorMap(anomaly_map, cv2.COLORMAP_JET)
    vis_map = cv2.addWeighted(heat_map, 0.5, np_image, 0.5, 0)

    # Convert OpenCV image back to PIL image for Gradio
    vis_map_pil = Image.fromarray(cv2.resize(cv2.cvtColor(vis_map, cv2.COLOR_BGR2RGB), (image_shape, image_shape)))

    return vis_map_pil

# Define examples
examples = [
    ["assets/img2.png", "Real-IAD"],
    ["assets/img.png", "VisA"]
]

# Gradio interface layout
demo = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Radio(["Real-IAD",
                  "VisA"],
        label="Pre-trained Datasets")
    ],
    outputs=[
        gr.Image(type="pil", label="Output Image")
    ],
    examples=examples,
    title="INP-Former -- Zero-shot Anomaly Detection",
    description="Upload an image and select pre-trained datasets to do zero-shot anomaly detection"
)

# Launch the demo
demo.launch()
# demo.launch(server_name="0.0.0.0", server_port=10002)