DiffAb / diffab /datasets /sabdab.py
luost26's picture
Update
753e275
import os
import random
import logging
import datetime
import pandas as pd
import joblib
import pickle
import lmdb
import subprocess
import torch
from Bio import PDB, SeqRecord, SeqIO, Seq
from Bio.PDB import PDBExceptions
from Bio.PDB import Polypeptide
from torch.utils.data import Dataset
from tqdm.auto import tqdm
from ..utils.protein import parsers, constants
from ._base import register_dataset
ALLOWED_AG_TYPES = {
'protein',
'protein | protein',
'protein | protein | protein',
'protein | protein | protein | protein | protein',
'protein | protein | protein | protein',
}
RESOLUTION_THRESHOLD = 4.0
TEST_ANTIGENS = [
'sars-cov-2 receptor binding domain',
'hiv-1 envelope glycoprotein gp160',
'mers s',
'influenza a virus',
'cd27 antigen',
]
def nan_to_empty_string(val):
if val != val or not val:
return ''
else:
return val
def nan_to_none(val):
if val != val or not val:
return None
else:
return val
def split_sabdab_delimited_str(val):
if not val:
return []
else:
return [s.strip() for s in val.split('|')]
def parse_sabdab_resolution(val):
if val == 'NOT' or not val or val != val:
return None
elif isinstance(val, str) and ',' in val:
return float(val.split(',')[0].strip())
else:
return float(val)
def _aa_tensor_to_sequence(aa):
return ''.join([Polypeptide.index_to_one(a.item()) for a in aa.flatten()])
def _label_heavy_chain_cdr(data, seq_map, max_cdr3_length=30):
if data is None or seq_map is None:
return data, seq_map
# Add CDR labels
cdr_flag = torch.zeros_like(data['aa'])
for position, idx in seq_map.items():
resseq = position[1]
cdr_type = constants.ChothiaCDRRange.to_cdr('H', resseq)
if cdr_type is not None:
cdr_flag[idx] = cdr_type
data['cdr_flag'] = cdr_flag
# Add CDR sequence annotations
data['H1_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H1] )
data['H2_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H2] )
data['H3_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.H3] )
cdr3_length = (cdr_flag == constants.CDR.H3).sum().item()
# Remove too long CDR3
if cdr3_length > max_cdr3_length:
cdr_flag[cdr_flag == constants.CDR.H3] = 0
logging.warning(f'CDR-H3 too long {cdr3_length}. Removed.')
return None, None
# Filter: ensure CDR3 exists
if cdr3_length == 0:
logging.warning('No CDR-H3 found in the heavy chain.')
return None, None
return data, seq_map
def _label_light_chain_cdr(data, seq_map, max_cdr3_length=30):
if data is None or seq_map is None:
return data, seq_map
cdr_flag = torch.zeros_like(data['aa'])
for position, idx in seq_map.items():
resseq = position[1]
cdr_type = constants.ChothiaCDRRange.to_cdr('L', resseq)
if cdr_type is not None:
cdr_flag[idx] = cdr_type
data['cdr_flag'] = cdr_flag
data['L1_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L1] )
data['L2_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L2] )
data['L3_seq'] = _aa_tensor_to_sequence( data['aa'][cdr_flag == constants.CDR.L3] )
cdr3_length = (cdr_flag == constants.CDR.L3).sum().item()
# Remove too long CDR3
if cdr3_length > max_cdr3_length:
cdr_flag[cdr_flag == constants.CDR.L3] = 0
logging.warning(f'CDR-L3 too long {cdr3_length}. Removed.')
return None, None
# Ensure CDR3 exists
if cdr3_length == 0:
logging.warning('No CDRs found in the light chain.')
return None, None
return data, seq_map
def preprocess_sabdab_structure(task):
entry = task['entry']
pdb_path = task['pdb_path']
parser = PDB.PDBParser(QUIET=True)
model = parser.get_structure(id, pdb_path)[0]
parsed = {
'id': entry['id'],
'heavy': None,
'heavy_seqmap': None,
'light': None,
'light_seqmap': None,
'antigen': None,
'antigen_seqmap': None,
}
try:
if entry['H_chain'] is not None:
(
parsed['heavy'],
parsed['heavy_seqmap']
) = _label_heavy_chain_cdr(*parsers.parse_biopython_structure(
model[entry['H_chain']],
max_resseq = 113 # Chothia, end of Heavy chain Fv
))
if entry['L_chain'] is not None:
(
parsed['light'],
parsed['light_seqmap']
) = _label_light_chain_cdr(*parsers.parse_biopython_structure(
model[entry['L_chain']],
max_resseq = 106 # Chothia, end of Light chain Fv
))
if parsed['heavy'] is None and parsed['light'] is None:
raise ValueError('Neither valid H-chain or L-chain is found.')
if len(entry['ag_chains']) > 0:
chains = [model[c] for c in entry['ag_chains']]
(
parsed['antigen'],
parsed['antigen_seqmap']
) = parsers.parse_biopython_structure(chains)
except (
PDBExceptions.PDBConstructionException,
parsers.ParsingException,
KeyError,
ValueError,
) as e:
logging.warning('[{}] {}: {}'.format(
task['id'],
e.__class__.__name__,
str(e)
))
return None
return parsed
class SAbDabDataset(Dataset):
MAP_SIZE = 32*(1024*1024*1024) # 32GB
def __init__(
self,
summary_path = './data/sabdab_summary_all.tsv',
chothia_dir = './data/all_structures/chothia',
processed_dir = './data/processed',
split = 'train',
split_seed = 2022,
transform = None,
reset = False,
):
super().__init__()
self.summary_path = summary_path
self.chothia_dir = chothia_dir
if not os.path.exists(chothia_dir):
raise FileNotFoundError(
f"SAbDab structures not found in {chothia_dir}. "
"Please download them from http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/archive/all/"
)
self.processed_dir = processed_dir
os.makedirs(processed_dir, exist_ok=True)
self.sabdab_entries = None
self._load_sabdab_entries()
self.db_conn = None
self.db_ids = None
self._load_structures(reset)
self.clusters = None
self.id_to_cluster = None
self._load_clusters(reset)
self.ids_in_split = None
self._load_split(split, split_seed)
self.transform = transform
def _load_sabdab_entries(self):
df = pd.read_csv(self.summary_path, sep='\t')
entries_all = []
for i, row in tqdm(
df.iterrows(),
dynamic_ncols=True,
desc='Loading entries',
total=len(df),
):
entry_id = "{pdbcode}_{H}_{L}_{Ag}".format(
pdbcode = row['pdb'],
H = nan_to_empty_string(row['Hchain']),
L = nan_to_empty_string(row['Lchain']),
Ag = ''.join(split_sabdab_delimited_str(
nan_to_empty_string(row['antigen_chain'])
))
)
ag_chains = split_sabdab_delimited_str(
nan_to_empty_string(row['antigen_chain'])
)
resolution = parse_sabdab_resolution(row['resolution'])
entry = {
'id': entry_id,
'pdbcode': row['pdb'],
'H_chain': nan_to_none(row['Hchain']),
'L_chain': nan_to_none(row['Lchain']),
'ag_chains': ag_chains,
'ag_type': nan_to_none(row['antigen_type']),
'ag_name': nan_to_none(row['antigen_name']),
'date': datetime.datetime.strptime(row['date'], '%m/%d/%y'),
'resolution': resolution,
'method': row['method'],
'scfv': row['scfv'],
}
# Filtering
if (
(entry['ag_type'] in ALLOWED_AG_TYPES or entry['ag_type'] is None)
and (entry['resolution'] is not None and entry['resolution'] <= RESOLUTION_THRESHOLD)
):
entries_all.append(entry)
self.sabdab_entries = entries_all
def _load_structures(self, reset):
if not os.path.exists(self._structure_cache_path) or reset:
if os.path.exists(self._structure_cache_path):
os.unlink(self._structure_cache_path)
self._preprocess_structures()
with open(self._structure_cache_path + '-ids', 'rb') as f:
self.db_ids = pickle.load(f)
self.sabdab_entries = list(
filter(
lambda e: e['id'] in self.db_ids,
self.sabdab_entries
)
)
@property
def _structure_cache_path(self):
return os.path.join(self.processed_dir, 'structures.lmdb')
def _preprocess_structures(self):
tasks = []
for entry in self.sabdab_entries:
pdb_path = os.path.join(self.chothia_dir, '{}.pdb'.format(entry['pdbcode']))
if not os.path.exists(pdb_path):
logging.warning(f"PDB not found: {pdb_path}")
continue
tasks.append({
'id': entry['id'],
'entry': entry,
'pdb_path': pdb_path,
})
data_list = joblib.Parallel(
n_jobs = max(joblib.cpu_count() // 2, 1),
)(
joblib.delayed(preprocess_sabdab_structure)(task)
for task in tqdm(tasks, dynamic_ncols=True, desc='Preprocess')
)
db_conn = lmdb.open(
self._structure_cache_path,
map_size = self.MAP_SIZE,
create=True,
subdir=False,
readonly=False,
)
ids = []
with db_conn.begin(write=True, buffers=True) as txn:
for data in tqdm(data_list, dynamic_ncols=True, desc='Write to LMDB'):
if data is None:
continue
ids.append(data['id'])
txn.put(data['id'].encode('utf-8'), pickle.dumps(data))
with open(self._structure_cache_path + '-ids', 'wb') as f:
pickle.dump(ids, f)
@property
def _cluster_path(self):
return os.path.join(self.processed_dir, 'cluster_result_cluster.tsv')
def _load_clusters(self, reset):
if not os.path.exists(self._cluster_path) or reset:
self._create_clusters()
clusters, id_to_cluster = {}, {}
with open(self._cluster_path, 'r') as f:
for line in f.readlines():
cluster_name, data_id = line.split()
if cluster_name not in clusters:
clusters[cluster_name] = []
clusters[cluster_name].append(data_id)
id_to_cluster[data_id] = cluster_name
self.clusters = clusters
self.id_to_cluster = id_to_cluster
def _create_clusters(self):
cdr_records = []
for id in self.db_ids:
structure = self.get_structure(id)
if structure['heavy'] is not None:
cdr_records.append(SeqRecord.SeqRecord(
Seq.Seq(structure['heavy']['H3_seq']),
id = structure['id'],
name = '',
description = '',
))
elif structure['light'] is not None:
cdr_records.append(SeqRecord.SeqRecord(
Seq.Seq(structure['light']['L3_seq']),
id = structure['id'],
name = '',
description = '',
))
fasta_path = os.path.join(self.processed_dir, 'cdr_sequences.fasta')
SeqIO.write(cdr_records, fasta_path, 'fasta')
cmd = ' '.join([
'mmseqs', 'easy-cluster',
os.path.realpath(fasta_path),
'cluster_result', 'cluster_tmp',
'--min-seq-id', '0.5',
'-c', '0.8',
'--cov-mode', '1',
])
subprocess.run(cmd, cwd=self.processed_dir, shell=True, check=True)
def _load_split(self, split, split_seed):
assert split in ('train', 'val', 'test')
ids_test = [
entry['id']
for entry in self.sabdab_entries
if entry['ag_name'] in TEST_ANTIGENS
]
test_relevant_clusters = set([self.id_to_cluster[id] for id in ids_test])
ids_train_val = [
entry['id']
for entry in self.sabdab_entries
if self.id_to_cluster[entry['id']] not in test_relevant_clusters
]
random.Random(split_seed).shuffle(ids_train_val)
if split == 'test':
self.ids_in_split = ids_test
elif split == 'val':
self.ids_in_split = ids_train_val[:20]
else:
self.ids_in_split = ids_train_val[20:]
def _connect_db(self):
if self.db_conn is not None:
return
self.db_conn = lmdb.open(
self._structure_cache_path,
map_size=self.MAP_SIZE,
create=False,
subdir=False,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
def get_structure(self, id):
self._connect_db()
with self.db_conn.begin() as txn:
return pickle.loads(txn.get(id.encode()))
def __len__(self):
return len(self.ids_in_split)
def __getitem__(self, index):
id = self.ids_in_split[index]
data = self.get_structure(id)
if self.transform is not None:
data = self.transform(data)
return data
@register_dataset('sabdab')
def get_sabdab_dataset(cfg, transform):
return SAbDabDataset(
summary_path = cfg.summary_path,
chothia_dir = cfg.chothia_dir,
processed_dir = cfg.processed_dir,
split = cfg.split,
split_seed = cfg.get('split_seed', 2022),
transform = transform,
)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--split', type=str, default='train')
parser.add_argument('--processed_dir', type=str, default='./data/processed')
parser.add_argument('--reset', action='store_true', default=False)
args = parser.parse_args()
if args.reset:
sure = input('Sure to reset? (y/n): ')
if sure != 'y':
exit()
dataset = SAbDabDataset(
processed_dir=args.processed_dir,
split=args.split,
reset=args.reset
)
print(dataset[0])
print(len(dataset), len(dataset.clusters))