Spaces:
Running
Running
File size: 4,173 Bytes
ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 ae06eb2 f558a24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import gradio as gr
import warnings
import torch
import Equirec2Perspec as E2P
import cv2
import numpy as np
os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
warnings.filterwarnings("ignore")
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
picture_height = 360
picture_width = 540
picture_fov = 45
# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
def detection(image):
sub_images = processPanorama(image)
processed_images = [np.array(sub_image) for sub_image in sub_images]
return processed_images
def processPanorama(image):
equ = E2P.Equirectangular(image)
FOV = picture_fov
y_axis = 0
sub_images = []
while y_axis <= 0:
z_axis = -150
while z_axis <= 90:
img = equ.GetPerspective(FOV, z_axis, y_axis, picture_height, picture_width)
# cv2.imwrite(f'{directory_name}_{z_axis}z.jpg', img)
sub_images.append(img)
z_axis += FOV
y_axis += FOV
return sub_images
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
original_size = init_image.size
_, image_tensor = image_transform_grounding(init_image)
image_pil: Image = image_transform_grounding_for_vis(init_image)
# run grounidng
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold,
device='cpu')
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return image_with_box
if __name__ == "__main__":
detect_app = gr.Blocks()
with detect_app:
gr.Markdown("# Panorama Traffic Sign Detection Demo")
gr.Markdown("Note the model runs on CPU for demo, so it may take a while to run the model.")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy", label="Please upload a panorama picture.")
run_button = gr.Button(label="Process & Detect")
with gr.Column():
gallery = gr.Gallery(label="Detection Results").style(
columns=[3], preview=False, object_fit="none")
run_button.click(fn=detection, inputs=[
input_image], outputs=[gallery])
detect_app.launch(share=False, show_api=False, show_error=True)
|