File size: 4,370 Bytes
ae06eb2
 
 
 
 
 
 
 
 
 
 
 
f558a24
 
 
ae06eb2
 
 
 
 
 
 
 
 
 
 
 
 
cc3ccd2
 
 
ae06eb2
 
 
 
 
 
 
f558a24
9196eaa
 
 
 
f558a24
9196eaa
f558a24
 
9196eaa
f558a24
 
 
 
 
 
 
9196eaa
f558a24
 
9196eaa
 
f558a24
 
 
ae06eb2
f558a24
ae06eb2
 
 
 
 
 
 
 
f558a24
 
ae06eb2
 
 
 
 
 
 
f558a24
ae06eb2
 
f558a24
ae06eb2
 
 
 
f558a24
ae06eb2
 
f558a24
ae06eb2
 
f558a24
9196eaa
6f64e41
9196eaa
de59cd4
9196eaa
 
ae06eb2
 
 
 
f558a24
 
ae06eb2
de59cd4
 
ae06eb2
 
f558a24
 
 
 
cc3ccd2
f558a24
ae06eb2
 
 
f558a24
cc3ccd2
6f64e41
ae06eb2
f558a24
cc3ccd2
ae06eb2
f558a24
 
ae06eb2
f558a24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
import gradio as gr
import warnings
import torch
import Equirec2Perspec as E2P
import cv2
import numpy as np

os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
warnings.filterwarnings("ignore")

from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T

from huggingface_hub import hf_hub_download

picture_height = 480
picture_width = 720
picture_fov = 45

# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"


def detection(image):
    sub_images = process_panorama(image)
    predict_images = []
    for sub_image in sub_images:
        predict_images.append(run_grounding(sub_image))

    return predict_images


def process_panorama(image):
    equ = E2P.Equirectangular(image)
    y_axis = 0

    sub_images = []
    while y_axis <= 0:
        z_axis = -150
        while z_axis <= 90:
            img = equ.GetPerspective(picture_fov, z_axis, y_axis, picture_height, picture_width)
            # cv2.imwrite(f'{directory_name}_{z_axis}z.jpg', img)
            sub_images.append(img)
            z_axis += picture_fov
        y_axis += picture_fov
    return sub_images


def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path)
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location='cpu')
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model


def image_transform_grounding(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    image, _ = transform(init_image, None)  # 3, h, w
    return init_image, image


def image_transform_grounding_for_vis(init_image):
    transform = T.Compose([
        T.RandomResize([800], max_size=1333),
    ])
    image, _ = transform(init_image, None)  # 3, h, w
    return image


model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)


def run_grounding(input_image):
    pil_img = Image.fromarray(input_image)
    init_image = pil_img.convert("RGB")
    grounding_caption = "traffic sign, car"
    box_threshold = 0.25
    text_threshold = 0.25

    _, image_tensor = image_transform_grounding(init_image)
    image_pil: Image = image_transform_grounding_for_vis(init_image)

    boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold,
                                     device='cpu')
    annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
    image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
    return image_with_box


if __name__ == "__main__":
    detect_app = gr.Blocks()
    with detect_app:
        gr.Markdown("# Panorama Traffic Sign Detection Demo")
        gr.Markdown("Please upload an panorama picture to see the detection results.")
        gr.Markdown("Note the model runs on CPU for demo, so it may take a while to run the model.")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="numpy", label="Please upload a panorama picture.")
                run_button = gr.Button(value="Process & Detect", variant="primary")
        with gr.Row():
            with gr.Column():
                gallery = gr.Gallery(label="Detection Results").style(
                    grid=(2, 3), preview=False, object_fit="none")

        run_button.click(fn=detection, inputs=[
            input_image], outputs=[gallery])

    detect_app.launch(share=False, show_api=False, show_error=True)