Spaces:
Sleeping
Sleeping
File size: 8,299 Bytes
4457016 8f6874d 74257c6 a50705b e376dbf 8f6874d 74257c6 a8098c5 74257c6 8f6874d e376dbf 8f6874d a50705b 8f6874d e376dbf 8f6874d 74257c6 8f6874d 74257c6 8f6874d e376dbf 74257c6 a50705b 74257c6 8f6874d a50705b 8f6874d e376dbf 8f6874d e376dbf a50705b 1e733e4 a50705b 1e733e4 a50705b 1e733e4 a50705b e376dbf a50705b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
from langgraph.graph import StateGraph, START, END, MessagesState
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from typing import Annotated
from typing_extensions import TypedDict
from langchain_core.tools import tool
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.tools import WikipediaQueryRun
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, AIMessage
from langchain_google_genai import ChatGoogleGenerativeAI
import gradio as gr
import os
import uuid
from datetime import datetime
# Get API key from Hugging Face Spaces secrets
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
if not GOOGLE_API_KEY:
raise ValueError("Please set GOOGLE_API_KEY in your Hugging Face Spaces secrets")
os.environ['GOOGLE_API_KEY'] = GOOGLE_API_KEY
# Initialize Gemini Flash 2.0 Model
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001")
# Define the State
class State(TypedDict):
messages: Annotated[list, add_messages]
# Tool 1: Wikipedia
wiki_api_wrapper = WikipediaAPIWrapper(top_k_results=1)
wikipedia_tool = WikipediaQueryRun(api_wrapper=wiki_api_wrapper)
# Tool 2: Historical Events
@tool
def historical_events(date_input: str) -> str:
"""Provide a list of important historical events for a given date."""
try:
res = llm.invoke(f"List important historical events that occurred on {date_input}.")
return res.content
except Exception as e:
return f"Error: {str(e)}"
# Tool 3: Palindrome Checker
@tool
def palindrome_checker(text: str) -> str:
"""Check if a word or phrase is a palindrome."""
cleaned = ''.join(c.lower() for c in text if c.isalnum())
if cleaned == cleaned[::-1]:
return f"'{text}' is a palindrome."
else:
return f"'{text}' is not a palindrome."
# Bind tools
tools = [wikipedia_tool, historical_events, palindrome_checker]
tool_node = ToolNode(tools=tools)
# Bind tools to the LLM
model_with_tools = llm.bind_tools(tools)
def should_continue(state: MessagesState):
last_message = state["messages"][-1]
if last_message.tool_calls:
return "tools"
return END
def call_model(state: MessagesState):
messages = state["messages"]
response = model_with_tools.invoke(messages)
return {"messages": [response]}
# Build LangGraph
builder = StateGraph(State)
builder.add_node("chatbot", call_model)
builder.add_node("tools", tool_node)
builder.add_edge(START, "chatbot")
builder.add_conditional_edges("chatbot", should_continue, {"tools": "tools", END: END})
builder.add_edge("tools", "chatbot")
# Add memory
memory = MemorySaver()
app = builder.compile(checkpointer=memory)
# Global conversation storage for each session
conversations = {}
def format_message_for_display(msg, msg_type="ai"):
"""Format a message for markdown display"""
timestamp = datetime.now().strftime("%H:%M")
if msg_type == "human":
return f"**π€ You** *({timestamp})*\n\n{msg}\n\n---\n"
elif msg_type == "tool":
tool_name = getattr(msg, 'name', 'Unknown Tool')
return f"**π§ {tool_name}** *({timestamp})*\n```\n{msg.content}\n```\n"
else: # AI message
return f"**π€ Assistant** *({timestamp})*\n\n{msg.content}\n\n---\n"
def chatbot_conversation(message, history, session_id):
"""Main chatbot function that maintains conversation history"""
# Generate session ID if not provided
if not session_id:
session_id = str(uuid.uuid4())
# Get or create conversation config for this session
config = {"configurable": {"thread_id": session_id}}
# Initialize conversation history if new session
if session_id not in conversations:
conversations[session_id] = []
# Add user message to display history
conversations[session_id].append(("human", message))
# Prepare input for LangGraph
inputs = {"messages": [HumanMessage(content=message)]}
try:
# Invoke the app and get the complete response
result = app.invoke(inputs, config)
# Extract the final messages from the result
final_messages = result["messages"]
# Process the messages to separate tools and AI responses
for msg in final_messages:
if isinstance(msg, HumanMessage):
continue # Skip human messages as we already added them
elif msg.content:
if hasattr(msg, 'name') and msg.name:
# Tool response
conversations[session_id].append(("tool", msg))
else:
# AI response
conversations[session_id].append(("ai", msg))
except Exception as e:
error_msg = f"β Error: {str(e)}"
conversations[session_id].append(("ai", type('obj', (object,), {'content': error_msg})))
# Format the entire conversation for display
formatted_history = ""
for msg_type, msg_content in conversations[session_id]:
if msg_type == "human":
formatted_history += format_message_for_display(msg_content, "human")
elif msg_type == "tool":
formatted_history += format_message_for_display(msg_content, "tool")
else: # ai
formatted_history += format_message_for_display(msg_content, "ai")
return formatted_history, session_id
def clear_conversation():
"""Clear the current conversation"""
return "", str(uuid.uuid4())
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="π Gemini Flash 2.0 Chatbot") as demo:
gr.Markdown("""
# π Gemini Flash 2.0 + LangGraph Chatbot
**LangGraph-powered conversational AI using Google's Gemini Flash 2.0**
π **Available Tools:**
- π **Wikipedia Search** - Get information from Wikipedia
- π **Palindrome Checker** - Check if text is a palindrome
- π
**Historical Events** - Find events that happened on specific dates
π‘ **Try asking:** *"Tell me about AI, then check if 'radar' is a palindrome"*
""")
with gr.Row():
with gr.Column(scale=4):
# Chat history display
chat_history = gr.Markdown(
value="π€ **Assistant**: Hello! I'm your AI assistant powered by Gemini Flash 2.0. I can help you with Wikipedia searches, check palindromes, and find historical events. What would you like to know?\n\n---\n",
label="π¬ Conversation"
)
# Input area
with gr.Row():
message_input = gr.Textbox(
placeholder="Type your message here...",
label="Your message",
scale=4,
lines=2
)
send_btn = gr.Button("Send π", scale=1, variant="primary")
# Control buttons
with gr.Row():
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("""
### π‘ Example Queries:
- "What is machine learning?"
- "Is 'level' a palindrome?"
- "What happened on June 6, 1944?"
- "Tell me about Python programming"
- "Check if 'A man a plan a canal Panama' is a palindrome"
""")
# Hidden session ID state
session_id = gr.State(value=str(uuid.uuid4()))
# Event handlers
def send_message(message, history, session_id):
if message.strip():
return chatbot_conversation(message, history, session_id) + ("",)
return history, session_id, message
send_btn.click(
send_message,
inputs=[message_input, chat_history, session_id],
outputs=[chat_history, session_id, message_input]
)
message_input.submit(
send_message,
inputs=[message_input, chat_history, session_id],
outputs=[chat_history, session_id, message_input]
)
clear_btn.click(
clear_conversation,
outputs=[chat_history, session_id]
)
if __name__ == "__main__":
demo.launch() |