File size: 8,539 Bytes
de99c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### **r/place 2023 Sentiment Analysis Model**\n",
    "This Jupyter notebook will fine-tune the DistilBERT model to perform sentiment analysis on Reddit comments in July 2023. Feel free to tweak the variables and code here. Credits are included at the end of the notebook."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Install Dependencies**<br>\n",
    "This notebook has been tested on Python 3.11.2 and uses Pytorch."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import csv\n",
    "import datasets\n",
    "import pandas as pd\n",
    "import sklearn\n",
    "import torch"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Load the Data**<br>\n",
    "The target CSV file has Reddit comments in Column 0 and a score in Column 1. The scores correspond to the following sentiments: -1 = negative, 0 = neutral, 1 = positive. We will tweak the range from [-1, 1] to [0, 2] to match the model's labels."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# define the data path and store the comments in a list\n",
    "data_path = \"data/Reddit_Data.csv\"\n",
    "comments_and_scores = []\n",
    "\n",
    "# read the csv and store each comment with its respective score\n",
    "with open(data_path, \"r\", encoding=\"utf8\") as f:\n",
    "    csv_reader = csv.reader(f)\n",
    "    next(csv_reader)\n",
    "    for row in csv_reader:\n",
    "        comment, score = row\n",
    "        comments_and_scores.append((comment, int(score)+1))\n",
    "\n",
    "print(comments_and_scores[0])\n",
    "print(len(comments_and_scores))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Separate Training and Testing Datasets**<br>\n",
    "We need to separate these comments into training and testing datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "train_set, test_set = train_test_split(comments_and_scores,\n",
    "                                       test_size=0.2,\n",
    "                                       random_state=24)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(len(train_set))\n",
    "print(len(test_set))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(train_set[0])\n",
    "print(test_set[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extract the training comments and scores\n",
    "train_comments = [group[0] for group in train_set]\n",
    "train_scores = [group[1] for group in train_set]\n",
    "\n",
    "# extract the testing comments and scores\n",
    "test_comments = [group[0] for group in test_set]\n",
    "test_scores = [group[1] for group in test_set]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(train_comments[0], train_scores[0])\n",
    "print(test_comments[0], test_scores[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have the training and testing datasets, we will convert them into Pandas DataFrame objects."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extract the train set from the list\n",
    "train_set = {\"text\": train_comments, \"labels\": train_scores}\n",
    "train_set = pd.DataFrame(train_set)\n",
    "train_set = datasets.Dataset.from_pandas(train_set)\n",
    "print(train_set)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extract the test set from the list\n",
    "test_set = {\"text\": test_comments, \"labels\": test_scores}\n",
    "test_set = pd.DataFrame(test_set)\n",
    "test_set = datasets.Dataset.from_pandas(test_set)\n",
    "print(test_set)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Tokenize the Data**<br>\n",
    "Prior to training the model, we will tokenize the Reddit comments into small pieces to make it easier for the model to identify the comment's sentiment. Note: I disabled the warning for the fast tokenizer request as it will prevent the trainer from running the .train() function later in the notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import DistilBertTokenizer\n",
    "tokenizer = DistilBertTokenizer.from_pretrained(\"distilbert-base-uncased\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# prepare the text inputs for the model\n",
    "def preprocess_function(examples):\n",
    "    return tokenizer(examples[\"text\"], truncation=True, max_length=128)\n",
    "\n",
    "tokenized_train = train_set.map(preprocess_function, batched=True)\n",
    "tokenized_test = test_set.map(preprocess_function, batched=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use data_collector to convert our samples to PyTorch tensors and concatenate them with the correct amount of padding\n",
    "from transformers import DataCollatorWithPadding\n",
    "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define DistilBERT as our base model:\n",
    "from transformers import DistilBertForSequenceClassification\n",
    "model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.metrics import precision_recall_fscore_support\n",
    "def compute_metrics(p):\n",
    "    preds = p.predictions.argmax(axis=1)\n",
    "    return {\n",
    "        'precision': precision_recall_fscore_support(p.label_ids, preds, average='weighted')[0],\n",
    "        'recall': precision_recall_fscore_support(p.label_ids, preds, average='weighted')[1],\n",
    "        'f1': precision_recall_fscore_support(p.label_ids, preds, average='weighted')[2],\n",
    "    }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define a new Trainer with all the objects we constructed so far\n",
    "from transformers import TrainingArguments, Trainer\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "    output_dir='args/',\n",
    "    evaluation_strategy='epoch',\n",
    "    save_total_limit=2,\n",
    "    learning_rate=2e-5,\n",
    "    per_device_train_batch_size=16,\n",
    "    per_device_eval_batch_size=16,\n",
    "    num_train_epochs=3,\n",
    "    weight_decay=0.01,\n",
    "    logging_dir='logs/',\n",
    ")\n",
    "\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_train,\n",
    "    eval_dataset=tokenized_test,\n",
    "    tokenizer=tokenizer,\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save_pretrained('saved_model/')"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}