Spaces:
Sleeping
Sleeping
File size: 17,201 Bytes
2d67dd4 e23ce51 2d67dd4 e23ce51 2d67dd4 e23ce51 2d67dd4 e23ce51 2d67dd4 e23ce51 2d67dd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"from haystack.nodes import PreProcessor, EmbeddingRetriever\n",
"from haystack.document_stores import FAISSDocumentStore\n",
"from haystack.utils import convert_files_to_docs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preprocess Documents"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### BLAB-Wiki"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'PreProcessor' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 5\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m preprocessor \u001b[39m=\u001b[39m PreProcessor(\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m clean_empty_lines\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m clean_whitespace\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m clean_header_footer\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m split_by\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39msentence\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m split_length\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m split_overlap\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m,\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m split_respect_sentence_boundary\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m all_docs \u001b[39m=\u001b[39m convert_files_to_docs(dir_path\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m./Fontes/Wiki_Pages/\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m docs_default \u001b[39m=\u001b[39m preprocessor\u001b[39m.\u001b[39mprocess(all_docs)\n",
"\u001b[0;31mNameError\u001b[0m: name 'PreProcessor' is not defined"
]
}
],
"source": [
"preprocessor = PreProcessor(\n",
" clean_empty_lines=True,\n",
" clean_whitespace=True,\n",
" clean_header_footer=False,\n",
" split_by=\"sentence\",\n",
" split_length=2,\n",
" split_overlap=1,\n",
" split_respect_sentence_boundary=False)\n",
"\n",
"all_docs = convert_files_to_docs(dir_path=\"./Fontes/Wiki_Pages/\")\n",
"docs_default = preprocessor.process(all_docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### QA Source"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# QA sentences\n",
"QA_path = \"./Fontes/QA_Base/\"\n",
"\n",
"train = pd.read_parquet(QA_path + 'train.parquet')['new_long_answers']\n",
"test = pd.read_parquet(QA_path + 'test.parquet')['new_long_answers']\n",
"validation = pd.read_parquet(QA_path + 'validation.parquet')['new_long_answers']\n",
"\n",
"answers = pd.concat([train,test,validation])\n",
"\n",
"docs_list = [{\"content\": v, \"content_type\": \"text\", \"score\":None, \"meta\":None} for i,v in answers.items()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create DocumentsStore and calculate Embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"document_store = FAISSDocumentStore(similarity=\"dot_product\", embedding_dim=512)\n",
"document_store.write_documents(docs_default + docs_list)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"retriever = EmbeddingRetriever(\n",
" document_store=document_store, \n",
" embedding_model=\"sentence-transformers/distiluse-base-multilingual-cased-v1\")\n",
"\n",
"document_store.update_embeddings(retriever, batch_size=10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package punkt to /home/luid/nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n",
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
"[nltk_data] /home/luid/nltk_data...\n",
"[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.\n"
]
},
{
"ename": "NotImplementedError",
"evalue": "Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 12\u001b[0m line \u001b[0;36m1\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m palavras \u001b[39m=\u001b[39m word_tokenize(sentenca, language\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mportuguese\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m \u001b[39m# POS-tagging das palavras\u001b[39;00m\n\u001b[0;32m---> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m pos_tags \u001b[39m=\u001b[39m pos_tag(palavras, lang\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mpor\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=15'>16</a>\u001b[0m \u001b[39m# Exibindo os resultados\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=16'>17</a>\u001b[0m \u001b[39mprint\u001b[39m(pos_tags)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:166\u001b[0m, in \u001b[0;36mpos_tag\u001b[0;34m(tokens, tagset, lang)\u001b[0m\n\u001b[1;32m 141\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 142\u001b[0m \u001b[39mUse NLTK's currently recommended part of speech tagger to\u001b[39;00m\n\u001b[1;32m 143\u001b[0m \u001b[39mtag the given list of tokens.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[39m:rtype: list(tuple(str, str))\u001b[39;00m\n\u001b[1;32m 164\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 165\u001b[0m tagger \u001b[39m=\u001b[39m _get_tagger(lang)\n\u001b[0;32m--> 166\u001b[0m \u001b[39mreturn\u001b[39;00m _pos_tag(tokens, tagset, tagger, lang)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:114\u001b[0m, in \u001b[0;36m_pos_tag\u001b[0;34m(tokens, tagset, tagger, lang)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_pos_tag\u001b[39m(tokens, tagset\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, tagger\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, lang\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[1;32m 112\u001b[0m \u001b[39m# Currently only supports English and Russian.\u001b[39;00m\n\u001b[1;32m 113\u001b[0m \u001b[39mif\u001b[39;00m lang \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39meng\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[0;32m--> 114\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mNotImplementedError\u001b[39;00m(\n\u001b[1;32m 115\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCurrently, NLTK pos_tag only supports English and Russian \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 116\u001b[0m \u001b[39m\"\u001b[39m\u001b[39m(i.e. lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39meng\u001b[39m\u001b[39m'\u001b[39m\u001b[39m or lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m'\u001b[39m\u001b[39m)\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n\u001b[1;32m 118\u001b[0m \u001b[39m# Throws Error if tokens is of string type\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(tokens, \u001b[39mstr\u001b[39m):\n",
"\u001b[0;31mNotImplementedError\u001b[0m: Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')"
]
}
],
"source": [
"import nltk\n",
"from nltk.tokenize import word_tokenize\n",
"from nltk import pos_tag\n",
"nltk.download('punkt')\n",
"nltk.download('averaged_perceptron_tagger')\n",
"\n",
"# Sentença de exemplo\n",
"sentenca = \"O gato está no telhado.\"\n",
"\n",
"# Tokenização da sentença em palavras\n",
"palavras = word_tokenize(sentenca, language='portuguese')\n",
"\n",
"# POS-tagging das palavras\n",
"pos_tags = pos_tag(palavras, lang='por')\n",
"\n",
"# Exibindo os resultados\n",
"print(pos_tags)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"sentence = \"Eu gosto de programar em Python.\"\n",
"inputs = tokenizer(sentence, return_tensors=\"pt\")\n",
"outputs = model(**inputs)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
"verb_indices = [(i,label) for i, label in enumerate(predicted_labels[0])]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(0, tensor(1)),\n",
" (1, tensor(1)),\n",
" (2, tensor(1)),\n",
" (3, tensor(1)),\n",
" (4, tensor(0)),\n",
" (5, tensor(0)),\n",
" (6, tensor(1)),\n",
" (7, tensor(1)),\n",
" (8, tensor(0)),\n",
" (9, tensor(1)),\n",
" (10, tensor(1))]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"verb_indices"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Verbos na sentença: ['gosto', 'de', '##r', 'em', '##thon']\n"
]
}
],
"source": [
"predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
"verb_indices = [i for i, label in enumerate(predicted_labels[0]) if label == 1]\n",
"\n",
"verbs = [tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][i].item()) for i in verb_indices]\n",
"print(\"Verbos na sentença:\", verbs)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-28 18:26:39.155987: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
"2023-11-28 18:26:39.300399: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
"2023-11-28 18:26:39.300771: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n"
]
}
],
"source": [
"import spacy\n",
"from spacy.lang.pt.examples import sentences "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares \n",
"\n",
"Carros autônomos empurram a responsabilidade do seguro para os fabricantes.São Francisco considera banir os robôs de entrega que andam pelas calçadas \n",
"\n",
"Londres é a maior cidade do Reino Unido \n",
"\n"
]
}
],
"source": [
"\n",
"# Alguns exemplos fornecidos pela própria biblioteca\n",
"for s in sentences:\n",
" print(s, '\\n')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares\n"
]
}
],
"source": [
"# Criando o objeto spacy\n",
"nlp = spacy.load(\"pt_core_news_lg\")\n",
"doc = nlp(sentences[0])\n",
"print(doc.text)\n"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"doc = nlp(\"A amazonia azul e a defesa maritma\")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"for token in doc:\n",
" verb_count = 0\n",
" if token.pos_ == 'VERB':\n",
" verb_count +=1"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"verb_count"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"A DET\n",
"amazonia NOUN\n",
"azul ADJ\n",
"e CCONJ\n",
"a DET\n",
"defesa NOUN\n",
"maritma NOUN\n"
]
}
],
"source": [
"for token in doc:\n",
" print(token.text, token.pos_)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|