File size: 17,201 Bytes
2d67dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23ce51
2d67dd4
e23ce51
 
 
 
 
 
 
 
 
 
 
 
 
2d67dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23ce51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d67dd4
 
 
 
 
 
 
 
 
e23ce51
 
 
 
 
 
2d67dd4
e23ce51
 
2d67dd4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "from haystack.nodes import PreProcessor, EmbeddingRetriever\n",
    "from haystack.document_stores import FAISSDocumentStore\n",
    "from haystack.utils import convert_files_to_docs"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Preprocess Documents"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### BLAB-Wiki"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'PreProcessor' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 5\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m preprocessor \u001b[39m=\u001b[39m PreProcessor(\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=1'>2</a>\u001b[0m     clean_empty_lines\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=2'>3</a>\u001b[0m     clean_whitespace\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=3'>4</a>\u001b[0m     clean_header_footer\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=4'>5</a>\u001b[0m     split_by\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39msentence\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=5'>6</a>\u001b[0m     split_length\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=6'>7</a>\u001b[0m     split_overlap\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m,\n\u001b[1;32m      <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=7'>8</a>\u001b[0m     split_respect_sentence_boundary\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=9'>10</a>\u001b[0m all_docs \u001b[39m=\u001b[39m convert_files_to_docs(dir_path\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m./Fontes/Wiki_Pages/\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#W4sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m docs_default \u001b[39m=\u001b[39m preprocessor\u001b[39m.\u001b[39mprocess(all_docs)\n",
      "\u001b[0;31mNameError\u001b[0m: name 'PreProcessor' is not defined"
     ]
    }
   ],
   "source": [
    "preprocessor = PreProcessor(\n",
    "    clean_empty_lines=True,\n",
    "    clean_whitespace=True,\n",
    "    clean_header_footer=False,\n",
    "    split_by=\"sentence\",\n",
    "    split_length=2,\n",
    "    split_overlap=1,\n",
    "    split_respect_sentence_boundary=False)\n",
    "\n",
    "all_docs = convert_files_to_docs(dir_path=\"./Fontes/Wiki_Pages/\")\n",
    "docs_default = preprocessor.process(all_docs)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### QA Source"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# QA sentences\n",
    "QA_path = \"./Fontes/QA_Base/\"\n",
    "\n",
    "train = pd.read_parquet(QA_path + 'train.parquet')['new_long_answers']\n",
    "test = pd.read_parquet(QA_path + 'test.parquet')['new_long_answers']\n",
    "validation = pd.read_parquet(QA_path + 'validation.parquet')['new_long_answers']\n",
    "\n",
    "answers = pd.concat([train,test,validation])\n",
    "\n",
    "docs_list = [{\"content\": v, \"content_type\": \"text\", \"score\":None, \"meta\":None} for i,v in answers.items()]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create DocumentsStore and calculate Embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "document_store = FAISSDocumentStore(similarity=\"dot_product\", embedding_dim=512)\n",
    "document_store.write_documents(docs_default + docs_list)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = EmbeddingRetriever(\n",
    "    document_store=document_store, \n",
    "    embedding_model=\"sentence-transformers/distiluse-base-multilingual-cased-v1\")\n",
    "\n",
    "document_store.update_embeddings(retriever, batch_size=10000)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[nltk_data] Downloading package punkt to /home/luid/nltk_data...\n",
      "[nltk_data]   Package punkt is already up-to-date!\n",
      "[nltk_data] Downloading package averaged_perceptron_tagger to\n",
      "[nltk_data]     /home/luid/nltk_data...\n",
      "[nltk_data]   Unzipping taggers/averaged_perceptron_tagger.zip.\n"
     ]
    },
    {
     "ename": "NotImplementedError",
     "evalue": "Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNotImplementedError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[1;32m/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb Célula 12\u001b[0m line \u001b[0;36m1\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=10'>11</a>\u001b[0m palavras \u001b[39m=\u001b[39m word_tokenize(sentenca, language\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mportuguese\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=12'>13</a>\u001b[0m \u001b[39m# POS-tagging das palavras\u001b[39;00m\n\u001b[0;32m---> <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=13'>14</a>\u001b[0m pos_tags \u001b[39m=\u001b[39m pos_tag(palavras, lang\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mpor\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=15'>16</a>\u001b[0m \u001b[39m# Exibindo os resultados\u001b[39;00m\n\u001b[1;32m     <a href='vscode-notebook-cell:/home/luid/Projetos/Fact_Checking_Blue_Amazon/ETL/embeddings_base.ipynb#X14sZmlsZQ%3D%3D?line=16'>17</a>\u001b[0m \u001b[39mprint\u001b[39m(pos_tags)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:166\u001b[0m, in \u001b[0;36mpos_tag\u001b[0;34m(tokens, tagset, lang)\u001b[0m\n\u001b[1;32m    141\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m    142\u001b[0m \u001b[39mUse NLTK's currently recommended part of speech tagger to\u001b[39;00m\n\u001b[1;32m    143\u001b[0m \u001b[39mtag the given list of tokens.\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    163\u001b[0m \u001b[39m:rtype: list(tuple(str, str))\u001b[39;00m\n\u001b[1;32m    164\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m    165\u001b[0m tagger \u001b[39m=\u001b[39m _get_tagger(lang)\n\u001b[0;32m--> 166\u001b[0m \u001b[39mreturn\u001b[39;00m _pos_tag(tokens, tagset, tagger, lang)\n",
      "File \u001b[0;32m~/.local/lib/python3.10/site-packages/nltk/tag/__init__.py:114\u001b[0m, in \u001b[0;36m_pos_tag\u001b[0;34m(tokens, tagset, tagger, lang)\u001b[0m\n\u001b[1;32m    111\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_pos_tag\u001b[39m(tokens, tagset\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, tagger\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, lang\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[1;32m    112\u001b[0m     \u001b[39m# Currently only supports English and Russian.\u001b[39;00m\n\u001b[1;32m    113\u001b[0m     \u001b[39mif\u001b[39;00m lang \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39meng\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[0;32m--> 114\u001b[0m         \u001b[39mraise\u001b[39;00m \u001b[39mNotImplementedError\u001b[39;00m(\n\u001b[1;32m    115\u001b[0m             \u001b[39m\"\u001b[39m\u001b[39mCurrently, NLTK pos_tag only supports English and Russian \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    116\u001b[0m             \u001b[39m\"\u001b[39m\u001b[39m(i.e. lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39meng\u001b[39m\u001b[39m'\u001b[39m\u001b[39m or lang=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mrus\u001b[39m\u001b[39m'\u001b[39m\u001b[39m)\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    117\u001b[0m         )\n\u001b[1;32m    118\u001b[0m     \u001b[39m# Throws Error if tokens is of string type\u001b[39;00m\n\u001b[1;32m    119\u001b[0m     \u001b[39melif\u001b[39;00m \u001b[39misinstance\u001b[39m(tokens, \u001b[39mstr\u001b[39m):\n",
      "\u001b[0;31mNotImplementedError\u001b[0m: Currently, NLTK pos_tag only supports English and Russian (i.e. lang='eng' or lang='rus')"
     ]
    }
   ],
   "source": [
    "import nltk\n",
    "from nltk.tokenize import word_tokenize\n",
    "from nltk import pos_tag\n",
    "nltk.download('punkt')\n",
    "nltk.download('averaged_perceptron_tagger')\n",
    "\n",
    "# Sentença de exemplo\n",
    "sentenca = \"O gato está no telhado.\"\n",
    "\n",
    "# Tokenização da sentença em palavras\n",
    "palavras = word_tokenize(sentenca, language='portuguese')\n",
    "\n",
    "# POS-tagging das palavras\n",
    "pos_tags = pos_tag(palavras, lang='por')\n",
    "\n",
    "# Exibindo os resultados\n",
    "print(pos_tags)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "sentence = \"Eu gosto de programar em Python.\"\n",
    "inputs = tokenizer(sentence, return_tensors=\"pt\")\n",
    "outputs = model(**inputs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
    "verb_indices = [(i,label) for i, label in enumerate(predicted_labels[0])]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(0, tensor(1)),\n",
       " (1, tensor(1)),\n",
       " (2, tensor(1)),\n",
       " (3, tensor(1)),\n",
       " (4, tensor(0)),\n",
       " (5, tensor(0)),\n",
       " (6, tensor(1)),\n",
       " (7, tensor(1)),\n",
       " (8, tensor(0)),\n",
       " (9, tensor(1)),\n",
       " (10, tensor(1))]"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "verb_indices"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Verbos na sentença: ['gosto', 'de', '##r', 'em', '##thon']\n"
     ]
    }
   ],
   "source": [
    "predicted_labels = torch.argmax(outputs.logits, dim=2)\n",
    "verb_indices = [i for i, label in enumerate(predicted_labels[0]) if label == 1]\n",
    "\n",
    "verbs = [tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][i].item()) for i in verb_indices]\n",
    "print(\"Verbos na sentença:\", verbs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-11-28 18:26:39.155987: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
      "2023-11-28 18:26:39.300399: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n",
      "2023-11-28 18:26:39.300771: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:894] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n"
     ]
    }
   ],
   "source": [
    "import spacy\n",
    "from spacy.lang.pt.examples import sentences "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares \n",
      "\n",
      "Carros autônomos empurram a responsabilidade do seguro para os fabricantes.São Francisco considera banir os robôs de entrega que andam pelas calçadas \n",
      "\n",
      "Londres é a maior cidade do Reino Unido \n",
      "\n"
     ]
    }
   ],
   "source": [
    "\n",
    "# Alguns exemplos fornecidos pela própria biblioteca\n",
    "for s in sentences:\n",
    "    print(s, '\\n')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares\n"
     ]
    }
   ],
   "source": [
    "# Criando o objeto spacy\n",
    "nlp = spacy.load(\"pt_core_news_lg\")\n",
    "doc = nlp(sentences[0])\n",
    "print(doc.text)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "doc = nlp(\"A amazonia azul e a defesa maritma\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "for token in doc:\n",
    "    verb_count = 0\n",
    "    if token.pos_ == 'VERB':\n",
    "        verb_count +=1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "verb_count"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A DET\n",
      "amazonia NOUN\n",
      "azul ADJ\n",
      "e CCONJ\n",
      "a DET\n",
      "defesa NOUN\n",
      "maritma NOUN\n"
     ]
    }
   ],
   "source": [
    "for token in doc:\n",
    "    print(token.text, token.pos_)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}