Spaces:
Running
Running
File size: 3,436 Bytes
4f6613a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
from typing import Optional, Union
import lightning.pytorch as pl
import torch
from lightning import LightningModule, Trainer
from lightning.pytorch.callbacks import Callback
from torch import Tensor, nn
from torch.utils._foreach_utils import (
_group_tensors_by_device_and_dtype,
_has_foreach_support,
)
@torch.no_grad()
def grad_norm(
parameters: Union[Tensor, list[Tensor]],
norm_type: float = 2.0,
) -> float:
"""
Returns the norm of the gradients of the given parameters.
Args:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
norm_type (float): type of the used p-norm.
Returns:
Total norm of the parameter gradients (viewed as a single vector).
""" # noqa: E501
if isinstance(parameters, Tensor):
parameters = [parameters]
grads = [p.grad for p in parameters if p.grad is not None]
if len(grads) == 0:
return None
first_device = grads[0].device
grouped_grads: dict[
tuple[torch.device, torch.dtype], list[list[Tensor]]
] = _group_tensors_by_device_and_dtype(
[[g.detach() for g in grads]]
) # type: ignore[assignment]
norms = []
for (device, _), ([grads], _) in grouped_grads.items():
if _has_foreach_support(grads, device=device):
norms.extend(torch._foreach_norm(grads, norm_type))
else:
norms.extend([torch.norm(g, norm_type) for g in grads])
return torch.norm(torch.stack([norm.to(first_device) for norm in norms]), norm_type)
class GradNormMonitor(Callback):
"""
Callback that computes the gradient norm of the model parameters.
"""
def __init__(
self,
norm_type: float = 2.0,
logging_interval: str = "step",
sub_module: Optional[Union[str, list[str]]] = None,
) -> None:
"""
Args:
norm_type (float): type of the used p-norm.
logging_interval (str): "step" or "epoch".
"""
super().__init__()
self.norm_type = norm_type
self.logging_interval = logging_interval
self.sub_module = sub_module
def on_after_backward(self, trainer: Trainer, model: LightningModule) -> None:
"""
Computes the gradient norm of the model parameters and logs it to the logger.
Args:
trainer (Trainer): The trainer object
model (LightningModule): The current lightningModule
"""
lightning_model = model
if self.sub_module is None:
return self.log_sub_module_grad_norm(lightning_model, model, "")
sub_modules = self.sub_module
if isinstance(sub_modules, str):
sub_modules = [sub_modules]
for sub_module in sub_modules:
self.log_sub_module_grad_norm(
lightning_model, getattr(model, sub_module), f"/{sub_module}"
)
def log_sub_module_grad_norm(
self, lightning_model: LightningModule, model: nn.Module, path: str
) -> None:
grad_norm_val = grad_norm(model.parameters(), self.norm_type)
if grad_norm_val is None:
return
on_step = self.logging_interval == "step"
lightning_model.log(
f"train{path}/grad_norm",
grad_norm_val,
on_step=on_step,
on_epoch=not on_step,
)
|