Spaces:
Runtime error
Runtime error
File size: 10,451 Bytes
1d376a9 8658420 1d376a9 24a15c0 ea40e33 697be1a c0dd25e 1c52cdd c0dd25e 697be1a 908b597 697be1a 908b597 5323497 908b597 9a87dbf 908b597 697be1a 908b597 697be1a 908b597 f008087 908b597 697be1a 1d376a9 8658420 7aa2aea 8658420 7aa2aea 8658420 7aa2aea 5323497 7aa2aea 5323497 7aa2aea 9770a07 7aa2aea 9770a07 7aa2aea 5323497 7aa2aea 8658420 7adf431 8658420 9770a07 8658420 697be1a 908b597 697be1a 40eaa37 697be1a c0dd25e 2322286 697be1a 908b597 1d376a9 908b597 1c52cdd 40eaa37 908b597 8658420 d80ae2d 8658420 2322286 8658420 46d56b3 d80ae2d 46d56b3 8658420 7aa2aea ea40e33 7aa2aea 908b597 7aa2aea 908b597 7aa2aea 908b597 7aa2aea 305acd7 7aa2aea 40eaa37 305acd7 697be1a c0dd25e d9a0906 e4e6ff0 d9a0906 3be1fea 5323497 697be1a 908b597 c0dd25e 5323497 697be1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import io
import re
from collections.abc import Iterable
import pandas as pd
import streamlit as st
from pandas.api.types import is_bool_dtype, is_datetime64_any_dtype, is_numeric_dtype
GITHUB_URL = "https://github.com/LudwigStumpp/llm-leaderboard"
NON_BENCHMARK_COLS = ["Open?", "Publisher"]
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame:
"""Extracts a table from a markdown text and formats it as a pandas DataFrame.
Args:
text (str): Markdown text containing a table.
Returns:
pd.DataFrame: Table as pandas DataFrame.
"""
df = (
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1)
.dropna(axis=1, how="all") # drop empty columns
.iloc[1:] # drop first row which is the "----" separator of the original markdown table
.sort_index(ascending=True)
.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
.replace("", float("NaN"))
.astype(float, errors="ignore")
)
# remove whitespace from column names and index
df.columns = df.columns.str.strip()
df.index = df.index.str.strip()
df.index.name = df.index.name.strip()
return df
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str:
"""Extracts the markdown table from a multiline string.
Args:
multiline (str): content of README.md file.
table_headline (str): Headline of the table in the README.md file.
next_headline_start (str, optional): Start of the next headline. Defaults to "#".
Returns:
str: Markdown table.
Raises:
ValueError: If the table could not be found.
"""
# extract everything between the table headline and the next headline
table = []
start = False
for line in multiline.split("\n"):
if line.startswith(table_headline):
start = True
elif line.startswith(next_headline_start):
start = False
elif start:
table.append(line + "\n")
if len(table) == 0:
raise ValueError(f"Could not find table with headline '{table_headline}'")
return "".join(table)
def remove_markdown_links(text: str) -> str:
"""Modifies a markdown text to remove all markdown links.
Example: [DISPLAY](LINK) to DISPLAY
First find all markdown links with regex.
Then replace them with: $1
Args:
text (str): Markdown text containing markdown links
Returns:
str: Markdown text without markdown links.
"""
# find all markdown links
markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text)
# remove link keep display text
for display, link in markdown_links:
text = text.replace(f"[{display}]({link})", display)
return text
def filter_dataframe_by_row_and_columns(df: pd.DataFrame, ignore_columns: list[str] | None = None) -> pd.DataFrame:
"""
Filter dataframe by the rows and columns to display.
This does not select based on the values in the dataframe, but rather on the index and columns.
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
Args:
df (pd.DataFrame): Original dataframe
ignore_columns (list[str], optional): Columns to ignore. Defaults to None.
Returns:
pd.DataFrame: Filtered dataframe
"""
df = df.copy()
if ignore_columns is None:
ignore_columns = []
modification_container = st.container()
with modification_container:
to_filter_index = st.multiselect("Filter by model:", sorted(df.index))
if to_filter_index:
df = pd.DataFrame(df.loc[to_filter_index])
to_filter_columns = st.multiselect(
"Filter by benchmark:", sorted([c for c in df.columns if c not in ignore_columns])
)
if to_filter_columns:
df = pd.DataFrame(df[ignore_columns + to_filter_columns])
return df
def filter_dataframe_by_column_values(df: pd.DataFrame) -> pd.DataFrame:
"""
Filter dataframe by the values in the dataframe.
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
df = df.copy()
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter results on:", df.columns)
left, right = st.columns((1, 20))
for column in to_filter_columns:
if is_bool_dtype(df[column]):
user_bool_input = right.checkbox(f"{column}", value=True)
df = df[df[column] == user_bool_input]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
if (_min != _max) and pd.notna(_min) and pd.notna(_max):
step = 0.01
user_num_input = right.slider(
f"Values for {column}:",
min_value=round(_min - step, 2),
max_value=round(_max + step, 2),
value=(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df[column]):
user_date_input = right.date_input(
f"Values for {column}:",
value=(
df[column].min(),
df[column].max(),
),
)
if isinstance(user_date_input, Iterable) and len(user_date_input) == 2:
user_date_input_datetime = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input_datetime
df = df.loc[df[column].between(start_date, end_date)]
else:
selected_values = right.multiselect(
f"Values for {column}:",
sorted(df[column].unique()),
)
if selected_values:
df = df[df[column].isin(selected_values)]
return df
def setup_basic():
title = "π LLM-Leaderboard"
st.set_page_config(
page_title=title,
page_icon="π",
layout="wide",
)
st.title(title)
st.markdown(
"A joint community effort to create one central leaderboard for LLMs."
f" Visit [llm-leaderboard]({GITHUB_URL}) to contribute. \n"
'We refer to a model being "open" if it can be locally deployed and used for commercial purposes.'
)
def setup_leaderboard(readme: str):
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard")
leaderboard_table = remove_markdown_links(leaderboard_table)
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
df_leaderboard["Open?"] = df_leaderboard["Open?"].map({"yes": 1, "no": 0}).astype(bool)
st.markdown("## Leaderboard")
modify = st.checkbox("Add filters")
clear_empty_entries = st.checkbox("Clear empty entries", value=True)
if modify:
df_leaderboard = filter_dataframe_by_row_and_columns(df_leaderboard, ignore_columns=NON_BENCHMARK_COLS)
df_leaderboard = filter_dataframe_by_column_values(df_leaderboard)
if clear_empty_entries:
df_leaderboard = df_leaderboard.dropna(axis=1, how="all")
benchmark_columns = [c for c in df_leaderboard.columns if df_leaderboard[c].dtype == float]
rows_wo_any_benchmark = df_leaderboard[benchmark_columns].isna().all(axis=1)
df_leaderboard = df_leaderboard[~rows_wo_any_benchmark]
st.dataframe(df_leaderboard)
st.download_button(
"Download current selection as .html",
df_leaderboard.to_html().encode("utf-8"),
"leaderboard.html",
"text/html",
key="download-html",
)
st.download_button(
"Download current selection as .csv",
df_leaderboard.to_csv().encode("utf-8"),
"leaderboard.csv",
"text/csv",
key="download-csv",
)
def setup_benchmarks(readme: str):
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks")
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)
st.markdown("## Covered Benchmarks")
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique())
df_selected = df_benchmarks.loc[selected_benchmark]
text = [
f"Name: {selected_benchmark}",
]
for key in df_selected.keys():
text.append(f"{key}: {df_selected[key]} ")
st.markdown(" \n".join(text))
def setup_sources():
st.markdown("## Sources")
st.markdown(
"The results of this leaderboard are collected from the individual papers and published results of the model "
"authors. If you are interested in the sources of each individual reported model value, please visit the "
f"[llm-leaderboard]({GITHUB_URL}) repository."
)
st.markdown(
"""
Special thanks to the following pages:
- [MosaicML - Model benchmarks](https://www.mosaicml.com/blog/mpt-7b)
- [lmsys.org - Chatbot Arena benchmarks](https://lmsys.org/blog/2023-05-03-arena/)
- [Papers With Code](https://paperswithcode.com/)
- [Stanford HELM](https://crfm.stanford.edu/helm/latest/)
- [HF Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
"""
)
def setup_disclaimer():
st.markdown("## Disclaimer")
st.markdown(
"Above information may be wrong. If you want to use a published model for commercial use, please contact a "
"lawyer."
)
def setup_footer():
st.markdown(
"""
---
Made with β€οΈ by the awesome open-source community from all over π.
"""
)
def main():
setup_basic()
with open("README.md", "r") as f:
readme = f.read()
setup_leaderboard(readme)
setup_benchmarks(readme)
setup_sources()
setup_disclaimer()
setup_footer()
if __name__ == "__main__":
main()
|