Spaces:
Runtime error
Runtime error
File size: 26,085 Bytes
973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da 731be70 973a4da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import numpy as np
import pandas as pd
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import random
from os.path import join
import os
import pickle
import torch
import matplotlib.pyplot as plt
import PIL
from PIL import Image, ImageColor
import sys
sys.path.append('backend')
from color_annotations import extract_color
from networks_stylegan3 import *
sys.path.append('.')
import dnnlib
import legacy
class DisentanglementBase:
def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using device', self.device)
self.repo_folder = repo_folder
self.model = model.to(self.device)
self.annotations = annotations
self.df = df
self.space = space
self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128',
'L13_256_128', 'L14_256_3']
self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128]
self.decoding_layers = 16
self.colors_list = colors_list
self.to_hsv()
if compute_s:
self.get_s_space()
def to_hsv(self):
"""
The tohsv function takes the top 3 colors of each image and converts them to HSV values.
It then adds these values as new columns in the dataframe.
:param self: Allow the function to access the dataframe
:return: The dataframe with the new columns added
:doc-author: Trelent
"""
print('Adding HSV encoding')
self.df['H1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
self.df['H2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
self.df['H3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
self.df['S1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
self.df['S2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
self.df['S3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
self.df['V1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
self.df['V2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
self.df['V3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
def get_s_space(self):
"""
The get_s_space function takes the w_vectors from the annotations dictionary and uses them to generate s_vectors.
The s_space is a space of vectors that are generated by passing each w vector through each layer of the model.
This allows us to see how much information about a particular class is contained in different layers.
:param self: Bind the method to a class
:return: A list of lists of s vectors
:doc-author: Trelent
"""
print('Getting S space from W')
ss = []
for w in tqdm(self.annotations['w_vectors']):
w_torch = torch.from_numpy(w).to(self.device)
W = w_torch.expand((16, -1)).unsqueeze(0)
s = []
for i,layer in enumerate(self.layers):
s.append(getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0)).numpy())
ss.append(s)
self.annotations['s_vectors'] = ss
annotations_file = join(self.repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
print('Storing s for future use here:', annotations_file)
with open(annotations_file, 'wb') as f:
pickle.dump(self.annotations, f)
def get_encoded_latent(self):
# ... (existing code for getX)
if self.space.lower() == 'w':
X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512))
elif self.space.lower() == 'z':
X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512))
elif self.space.lower() == 's':
concat_v = []
for i in range(len(self.annotations['w_vectors'])):
concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1))
X = np.array(concat_v)
X = X[:, 0, :]
else:
Exception("Sorry, option not available, select among Z, W, S")
print('Shape embedding:', X.shape)
return X
def get_train_val(self, var='H1', cat=True):
X = self.get_encoded_latent()
y = np.array(self.df[var].values)
if cat:
y_cat = pd.cut(y,
bins=[x*256/12 if x<12 else 256 for x in range(13)],
labels=self.colors_list
).fillna('Warm Pink Red')
x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
else:
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
return x_train, x_val, y_train, y_val
def InterFaceGAN_separation_vector(self, method='LR', C=0.1):
"""
Method from InterfaceGAN
The get_separation_space function takes in a type_bin, annotations, and df.
It then samples 100 of the most representative abstracts for that type_bin and 100 of the least representative abstracts for that type_bin.
It then trains an SVM or logistic regression model on these 200 samples to find a separation space between them.
The function returns this separation space as well as how many nodes are important in this separation space.
:param type_bin: Select the type of abstracts to be used for training
:param annotations: Access the z_vectors
:param df: Get the abstracts that are used for training
:param samples: Determine how many samples to take from the top and bottom of the distribution
:param method: Specify the classifier to use
:param C: Control the regularization strength
:return: The weights of the linear classifier
:doc-author: Trelent
"""
x_train, x_val, y_train, y_val = self.get_train_val()
if method == 'SVM':
svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C)
svc.fit(x_train, y_train)
print('Val performance SVM', np.round(svc.score(x_val, y_val), 2))
return svc.coef_ / np.linalg.norm(clf.coef_)
elif method == 'LR':
clf = LogisticRegression(random_state=0, C=C)
clf.fit(x_train, y_train)
print('Val performance logistic regression', np.round(clf.score(x_val, y_val), 2))
return clf.coef_ / np.linalg.norm(clf.coef_)
def get_original_position_latent(self, positive_idxs, negative_idxs):
# ... (existing code for get_original_pos)
separation_vectors = []
for i in range(len(self.colors_list)):
if self.space.lower() == 's':
current_idx = 0
vectors = []
for j, (leng, layer) in enumerate(zip(self.layers_shapes, self.layers)):
arr = np.zeros(leng)
for positive_idx in positive_idxs[i]:
if positive_idx >= current_idx and positive_idx < current_idx + leng:
arr[positive_idx - current_idx] = 1
for negative_idx in negative_idxs[i]:
if negative_idx >= current_idx and negative_idx < current_idx + leng:
arr[negative_idx - current_idx] = 1
arr = arr / (np.linalg.norm(arr) + 0.000001)
vectors.append(arr)
current_idx += leng
elif self.space.lower() == 'z' or self.space.lower() == 'w':
vectors = np.zeros(512)
vectors[positive_idxs[i]] = 1
vectors[negative_idxs[i]] = -1
vectors = vectors / (np.linalg.norm(vectors) + 0.000001)
else:
raise Exception("""This space is not allowed in this function,
select among Z, W, S""")
separation_vectors.append(vectors)
return separation_vectors
def StyleSpace_separation_vector(self, sign=True, num_factors=20, cutout=0.25):
""" Formula from StyleSpace Analysis """
x_train, x_val, y_train, y_val = self.get_train_val()
positive_idxs = []
negative_idxs = []
for color in self.colors_list:
x_col = x_train[np.where(y_train == color)]
mp = np.mean(x_train, axis=0)
sp = np.std(x_train, axis=0)
de = (x_col - mp) / sp
meu = np.mean(de, axis=0)
seu = np.std(de, axis=0)
if sign:
thetau = meu / seu
positive_idx = np.argsort(thetau)[-num_factors//2:]
negative_idx = np.argsort(thetau)[:num_factors//2]
else:
thetau = np.abs(meu) / seu
positive_idx = np.argsort(thetau)[-num_factors:]
negative_idx = []
if cutout:
beyond_cutout = np.where(np.abs(thetau) > cutout)
positive_idx = np.intersect1d(positive_idx, beyond_cutout)
negative_idx = np.intersect1d(negative_idx, beyond_cutout)
if len(positive_idx) == 0 and len(negative_idx) == 0:
print('No values found above the current cutout', cutout, 'for color', color, '.\n Disentangled vector will be all zeros.' )
positive_idxs.append(positive_idx)
negative_idxs.append(negative_idx)
separation_vectors = self.get_original_position_latent(positive_idxs, negative_idxs)
return separation_vectors
def GANSpace_separation_vectors(self, num_components):
x_train, x_val, y_train, y_val = self.get_train_val()
if self.space.lower() == 'w':
pca = PCA(n_components=num_components)
dims_pca = pca.fit_transform(x_train.T)
dims_pca /= np.linalg.norm(dims_pca, axis=0)
return dims_pca
else:
raise("""This space is not allowed in this function,
only W""")
def generate_images(self, seed, separation_vector=None, lambd=0):
"""
The generate_original_image function takes in a latent vector and the model,
and returns an image generated from that latent vector.
:param z: Generate the image
:param model: Generate the image
:return: A pil image
:doc-author: Trelent
"""
G = self.model.to(self.device) # type: ignore
# Labels.
label = torch.zeros([1, G.c_dim], device=self.device)
if self.space.lower() == 'z':
vec = self.annotations['z_vectors'][seed]
Z = torch.from_numpy(vec.copy()).to(self.device)
if separation_vector is not None:
change = torch.from_numpy(separation_vector.copy()).unsqueeze(0).to(self.device)
Z = torch.add(Z, change, alpha=lambd)
img = G(Z, label, truncation_psi=1, noise_mode='const')
elif self.space.lower() == 'w':
vec = self.annotations['w_vectors'][seed]
W = torch.from_numpy(np.repeat(vec, self.decoding_layers, axis=0)
.reshape(1, self.decoding_layers, vec.shape[1]).copy()).to(self.device)
if separation_vector is not None:
change = torch.from_numpy(separation_vector.copy()).unsqueeze(0).to(self.device)
W = torch.add(W, change, alpha=lambd)
img = G.synthesis(W, noise_mode='const')
else:
raise Exception("""This space is not allowed in this function,
select either W or Z or use generate_flexible_images""")
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
def forward_from_style(self, x, styles, layer):
dtype = torch.float16 if (getattr(self.model.synthesis, layer).use_fp16 and self.device=='cuda') else torch.float32
if getattr(self.model.synthesis, layer).is_torgb:
weight_gain = 1 / np.sqrt(getattr(self.model.synthesis, layer).in_channels * (getattr(self.model.synthesis, layer).conv_kernel ** 2))
styles = styles * weight_gain
input_gain = getattr(self.model.synthesis, layer).magnitude_ema.rsqrt().to(dtype)
# Execute modulated conv2d.
x = modulated_conv2d(x=x.to(dtype), w=getattr(self.model.synthesis, layer).weight.to(dtype), s=styles.to(dtype),
padding=getattr(self.model.synthesis, layer).conv_kernel-1,
demodulate=(not getattr(self.model.synthesis, layer).is_torgb),
input_gain=input_gain.to(dtype))
# Execute bias, filtered leaky ReLU, and clamping.
gain = 1 if getattr(self.model.synthesis, layer).is_torgb else np.sqrt(2)
slope = 1 if getattr(self.model.synthesis, layer).is_torgb else 0.2
x = filtered_lrelu.filtered_lrelu(x=x, fu=getattr(self.model.synthesis, layer).up_filter, fd=getattr(self.model.synthesis, layer).down_filter,
b=getattr(self.model.synthesis, layer).bias.to(x.dtype),
up=getattr(self.model.synthesis, layer).up_factor, down=getattr(self.model.synthesis, layer).down_factor,
padding=getattr(self.model.synthesis, layer).padding,
gain=gain, slope=slope, clamp=getattr(self.model.synthesis, layer).conv_clamp)
return x
def generate_flexible_images(self, seed, separation_vector=None, lambd=0):
if self.space.lower() != 's':
raise Exception("""This space is not allowed in this function,
select S or use generate_images""")
vec = self.annotations['w_vectors'][seed]
w_torch = torch.from_numpy(vec).to(self.device)
W = w_torch.expand((self.decoding_layers, -1)).unsqueeze(0)
x = self.model.synthesis.input(W[0,0].unsqueeze(0))
for i, layer in enumerate(self.layers[1:]):
style = getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0))
if separation_vector is not None:
change = torch.from_numpy(separation_vector[i+1].copy()).unsqueeze(0).to(self.device)
style = torch.add(style, change, alpha=lambd)
x = self.forward_from_style(x, style, layer)
if self.model.synthesis.output_scale != 1:
x = x * self.model.synthesis.output_scale
img = (x.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
return img
def generate_changes(self, seed, separation_vector, min_epsilon=-3, max_epsilon=3, count=5, savefig=True, feature=None, method=None):
"""
The regenerate_images function takes a model, z, and decision_boundary as input. It then
constructs an inverse rotation/translation matrix and passes it to the generator. The generator
expects this matrix as an inverse to avoid potentially failing numerical operations in the network.
The function then generates images using G(z_0, label) where z_0 is a linear combination of z and the decision boundary.
:param model: Pass in the model to be used for image generation
:param z: Generate the starting point of the line
:param decision_boundary: Generate images along the direction of the decision boundary
:param min_epsilon: Set the minimum value of lambda
:param max_epsilon: Set the maximum distance from the original image to generate
:param count: Determine the number of images that are generated
:return: A list of images and a list of lambdas
:doc-author: Trelent
"""
os.makedirs(join(self.repo_folder, 'figures'), exist_ok=True)
lambdas = np.linspace(min_epsilon, max_epsilon, count)
images = []
# Generate images.
for _, lambd in enumerate(tqdm(lambdas)):
if self.space.lower() == 's':
images.append(self.generate_flexible_images(seed, separation_vector=separation_vector, lambd=lambd))
elif self.space.lower() in ['z', 'w']:
images.append(self.generate_images(seed, separation_vector=separation_vector, lambd=lambd))
if savefig:
print('Generating image for color', feature)
fig, axs = plt.subplots(1, len(images), figsize=(90,20))
title = 'Disentanglement method: '+ method + ', on feature: ' + feature + ' on space: ' + self.space + ', image seed: ' + str(seed)
name = '_'.join([method, feature, self.space, str(seed), str(lambdas[-1])])
fig.suptitle(title, fontsize=20)
for i, (image, lambd) in enumerate(zip(images, lambdas)):
axs[i].imshow(image)
axs[i].set_title(np.round(lambd, 2))
plt.tight_layout()
plt.savefig(join(self.repo_folder, 'figures', name+'.jpg'))
plt.close()
return images, lambdas
def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
items = random.sample(range(100000), samples)
hue_low = feature_id * 256 / 12
hue_high = (feature_id + 1) * 256 / 12
matches = 0
for seed in tqdm(items):
images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd, max_epsilon=lambd, count=3, savefig=savefig, feature=feature, method=method)
try:
colors_negative = extract_color(images[0], 5, 1, None)
h0, s0, v0 = ImageColor.getcolor(colors_negative[0], 'HSV')
colors_orig = extract_color(images[1], 5, 1, None)
h1, s1, v1 = ImageColor.getcolor(colors_orig[0], 'HSV')
colors_positive = extract_color(images[2], 5, 1, None)
h2, s2, v2 = ImageColor.getcolor(colors_positive[0], 'HSV')
if h1 > hue_low and h1 < hue_high:
samples -= 1
else:
if (h0 > hue_low and h0 < hue_high) or (h2 > hue_low and h2 < hue_high):
matches += 1
except Exception as e:
print(e)
return np.round(matches / samples, 2)
def main():
repo_folder = '.'
annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv')
df = pd.read_csv(df_file).fillna('#000000')
model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl')
with dnnlib.util.open_url(model_file) as f:
model = legacy.load_network_pkl(f)['G_ema'] # type: ignore
colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
scores = []
kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False], 'num_factors':[1, 10, 20], 'cutout': [None], 'max_lambda':[18, 3], 'samples':50, 'lambda_verif':[10, 5, 3]}
for space in ['w', 'z', 's']:
print('Launching experiment with space:', space)
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False)
for method in ['InterFaceGAN', 'StyleSpace', 'GANSpace']:
if space != 's' and method == 'InterFaceGAN':
print('Now obtaining separation vector for using InterfaceGAN')
for met in kwargs['CL method']:
for c in kwargs['C']:
separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
for i, color in enumerate(colors_list):
print('Generating images with variations')
for s in range(30):
seed = random.randint(0,100000)
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=str(method) + '_' + str(met) + '_' + str(c))
print('Finally obtaining verification score')
for verif in kwargs['lambda_verif']:
score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
print('Score for method', method, 'on space', space, 'for color', color, ':', score)
scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, 'data/scores.csv'))
elif method == 'StyleSpace':
print('Now obtaining separation vector for using StyleSpace')
for sign in kwargs['sign']:
for num_factors in kwargs['num_factors']:
for cutout in kwargs['cutout']:
separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
for i, color in enumerate(colors_list):
print('Generating images with variations')
for s in range(30):
seed = random.randint(0,100000)
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method + '_' + str(num_factors) + '_' + str(cutout) + '_' + str(sign))
print('Finally obtaining verification score')
for verif in kwargs['lambda_verif']:
score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
print('Score for method', method, 'on space', space, 'for color', color, ':', score)
scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, 'data/scores.csv'))
if space == 'w' and method == 'GANSpace':
print('Now obtaining separation vector for using GANSpace')
separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
for s in range(30):
print('Generating images with variations')
seed = random.randint(0,100000)
for i in range(100):
for eps in kwargs['max_lambda']:
disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method)
score = None
scores.append([space, method, color, score, '100', ', '.join(list(separation_vectors[i].astype(str)))])
else:
print('Skipping', method, 'on space', space)
continue
score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
print(score_df)
score_df.to_csv(join(repo_folder, 'data/scores.csv'))
if __name__ == "__main__":
main() |