File size: 26,085 Bytes
973a4da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731be70
973a4da
 
 
 
 
 
 
 
 
 
 
731be70
 
 
973a4da
731be70
 
 
 
 
 
 
 
 
 
 
973a4da
731be70
 
973a4da
731be70
973a4da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731be70
 
 
973a4da
 
731be70
973a4da
 
 
 
 
731be70
973a4da
 
 
 
 
 
 
731be70
 
 
 
 
973a4da
 
731be70
973a4da
 
731be70
 
 
 
 
 
973a4da
 
 
 
 
 
 
 
731be70
 
 
 
 
973a4da
 
731be70
973a4da
 
731be70
 
 
 
 
973a4da
 
 
731be70
973a4da
 
731be70
 
 
 
 
 
973a4da
 
 
 
 
 
731be70
973a4da
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import numpy as np
import pandas as pd

from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

from tqdm import tqdm
import random
from os.path import join
import os
import pickle

import torch

import matplotlib.pyplot as plt
import PIL
from PIL import Image, ImageColor

import sys
sys.path.append('backend')
from color_annotations import extract_color
from networks_stylegan3 import *
sys.path.append('.')

import dnnlib 
import legacy

class DisentanglementBase:
    def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print('Using device', self.device)
        self.repo_folder = repo_folder
        self.model = model.to(self.device)
        self.annotations = annotations
        self.df = df
        self.space = space
        
        self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
                       'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512', 
                       'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128', 
                       'L13_256_128', 'L14_256_3']
        self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128]
        self.decoding_layers = 16
        self.colors_list = colors_list
        
        self.to_hsv()
        if compute_s:
            self.get_s_space()
        

    def to_hsv(self):
        """
        The tohsv function takes the top 3 colors of each image and converts them to HSV values.
        It then adds these values as new columns in the dataframe.
        
        :param self: Allow the function to access the dataframe
        :return: The dataframe with the new columns added
        :doc-author: Trelent
        """
        print('Adding HSV encoding')
        self.df['H1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
        self.df['H2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
        self.df['H3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[0])
        
        self.df['S1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
        self.df['S2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
        self.df['S3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[1])
        
        self.df['V1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
        self.df['V2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
        self.df['V3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'HSV')[2])
    
    def get_s_space(self):
        """
        The get_s_space function takes the w_vectors from the annotations dictionary and uses them to generate s_vectors.
        The s_space is a space of vectors that are generated by passing each w vector through each layer of the model.
        This allows us to see how much information about a particular class is contained in different layers.
        
        :param self: Bind the method to a class
        :return: A list of lists of s vectors
        :doc-author: Trelent
        """
        print('Getting S space from W')
        ss = []
        for w in tqdm(self.annotations['w_vectors']):
            w_torch = torch.from_numpy(w).to(self.device)
            W = w_torch.expand((16, -1)).unsqueeze(0)
            s = []
            for i,layer in enumerate(self.layers):
                s.append(getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0)).numpy())

            ss.append(s)
        self.annotations['s_vectors'] = ss
        annotations_file = join(self.repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
        print('Storing s for future use here:', annotations_file)
        with open(annotations_file, 'wb') as f:
            pickle.dump(self.annotations, f)

    def get_encoded_latent(self):
        # ... (existing code for getX)
        if self.space.lower() == 'w':
            X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512))
        elif self.space.lower() == 'z':
            X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512))
        elif self.space.lower() == 's':
            concat_v = []
            for i in range(len(self.annotations['w_vectors'])):
                concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1))
            X = np.array(concat_v)
            X = X[:, 0, :]
        else:
            Exception("Sorry, option not available, select among Z, W, S")
            
        print('Shape embedding:', X.shape)
        return X
    
    def get_train_val(self, var='H1', cat=True):
        X = self.get_encoded_latent()
        y = np.array(self.df[var].values)
        if cat:
            y_cat = pd.cut(y, 
                            bins=[x*256/12 if x<12 else 256 for x in range(13)],
                            labels=self.colors_list
                            ).fillna('Warm Pink Red')
            x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
        else:
            x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
        return x_train, x_val, y_train, y_val
    
    def InterFaceGAN_separation_vector(self, method='LR', C=0.1):
        """
        Method from InterfaceGAN
        The get_separation_space function takes in a type_bin, annotations, and df.
        It then samples 100 of the most representative abstracts for that type_bin and 100 of the least representative abstracts for that type_bin.
        It then trains an SVM or logistic regression model on these 200 samples to find a separation space between them. 
        The function returns this separation space as well as how many nodes are important in this separation space.
        
        :param type_bin: Select the type of abstracts to be used for training
        :param annotations: Access the z_vectors
        :param df: Get the abstracts that are used for training
        :param samples: Determine how many samples to take from the top and bottom of the distribution
        :param method: Specify the classifier to use
        :param C: Control the regularization strength
        :return: The weights of the linear classifier
        :doc-author: Trelent
        """
        x_train, x_val, y_train, y_val = self.get_train_val()
        
        if method == 'SVM':
            svc = SVC(gamma='auto', kernel='linear', random_state=0, C=C)
            svc.fit(x_train, y_train)
            print('Val performance SVM', np.round(svc.score(x_val, y_val), 2))
            return svc.coef_ / np.linalg.norm(clf.coef_)
        elif method == 'LR':
            clf = LogisticRegression(random_state=0, C=C)
            clf.fit(x_train, y_train)
            print('Val performance logistic regression', np.round(clf.score(x_val, y_val), 2))
            return clf.coef_ / np.linalg.norm(clf.coef_)

    def get_original_position_latent(self, positive_idxs, negative_idxs):
        # ... (existing code for get_original_pos)
        separation_vectors = []
        for i in range(len(self.colors_list)):
            if self.space.lower() == 's':
                current_idx = 0
                vectors = []
                for j, (leng, layer) in enumerate(zip(self.layers_shapes, self.layers)):
                    arr = np.zeros(leng)
                    for positive_idx in positive_idxs[i]:
                        if positive_idx >= current_idx and positive_idx < current_idx + leng:
                            arr[positive_idx - current_idx] = 1
                    for negative_idx in negative_idxs[i]:
                        if negative_idx >= current_idx and negative_idx < current_idx + leng:
                            arr[negative_idx - current_idx] = 1
                        arr = arr / (np.linalg.norm(arr) + 0.000001)
                    vectors.append(arr)
                    current_idx += leng
            elif self.space.lower() == 'z' or self.space.lower() == 'w':
                vectors = np.zeros(512)
                vectors[positive_idxs[i]] = 1
                vectors[negative_idxs[i]] = -1
                vectors = vectors / (np.linalg.norm(vectors) + 0.000001)
            else:
                raise Exception("""This space is not allowed in this function, 
                                    select among Z, W, S""")
            separation_vectors.append(vectors)
            
        return separation_vectors    
    
    def StyleSpace_separation_vector(self, sign=True, num_factors=20, cutout=0.25):
        """ Formula from StyleSpace Analysis """
        x_train, x_val, y_train, y_val = self.get_train_val()
        
        positive_idxs = []
        negative_idxs = []
        for color in self.colors_list:
            x_col = x_train[np.where(y_train == color)]
            mp = np.mean(x_train, axis=0)
            sp = np.std(x_train, axis=0)
            de = (x_col - mp) / sp
            meu = np.mean(de, axis=0)
            seu = np.std(de, axis=0)
            if sign:
                thetau = meu / seu
                positive_idx = np.argsort(thetau)[-num_factors//2:]
                negative_idx = np.argsort(thetau)[:num_factors//2]
                
            else:
                thetau = np.abs(meu) / seu
                positive_idx = np.argsort(thetau)[-num_factors:]
                negative_idx = []
                

            if cutout:
                beyond_cutout = np.where(np.abs(thetau) > cutout)
                positive_idx = np.intersect1d(positive_idx, beyond_cutout)
                negative_idx = np.intersect1d(negative_idx, beyond_cutout)
                
                if len(positive_idx) == 0 and len(negative_idx) == 0:
                    print('No values found above the current cutout', cutout, 'for color', color, '.\n Disentangled vector will be all zeros.' )
                
            positive_idxs.append(positive_idx)
            negative_idxs.append(negative_idx)
        
        separation_vectors = self.get_original_position_latent(positive_idxs, negative_idxs)
        return separation_vectors

    def GANSpace_separation_vectors(self, num_components):
        x_train, x_val, y_train, y_val = self.get_train_val()
        if self.space.lower() == 'w':
            pca = PCA(n_components=num_components)

            dims_pca = pca.fit_transform(x_train.T)
            dims_pca /= np.linalg.norm(dims_pca, axis=0)
            
            return dims_pca
        
        else:
            raise("""This space is not allowed in this function, 
                     only W""")
    
    def generate_images(self, seed, separation_vector=None, lambd=0):
        """
        The generate_original_image function takes in a latent vector and the model,
        and returns an image generated from that latent vector.
        
        
        :param z: Generate the image
        :param model: Generate the image
        :return: A pil image
        :doc-author: Trelent
        """
        G = self.model.to(self.device) # type: ignore
        # Labels.
        label = torch.zeros([1, G.c_dim], device=self.device)
        if self.space.lower() == 'z':
            vec = self.annotations['z_vectors'][seed]
            Z = torch.from_numpy(vec.copy()).to(self.device)
            if separation_vector is not None:
                change = torch.from_numpy(separation_vector.copy()).unsqueeze(0).to(self.device)
                Z = torch.add(Z, change, alpha=lambd)
            img = G(Z, label, truncation_psi=1, noise_mode='const')
        elif self.space.lower() == 'w':
            vec = self.annotations['w_vectors'][seed]
            W = torch.from_numpy(np.repeat(vec, self.decoding_layers, axis=0)
                                 .reshape(1, self.decoding_layers, vec.shape[1]).copy()).to(self.device)
            if separation_vector is not None:
                change = torch.from_numpy(separation_vector.copy()).unsqueeze(0).to(self.device)
                W = torch.add(W, change, alpha=lambd)
            img = G.synthesis(W, noise_mode='const')
        else:
            raise Exception("""This space is not allowed in this function, 
                            select either W or Z or use generate_flexible_images""")
            
        img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
        return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')

    def forward_from_style(self, x, styles, layer):
        dtype = torch.float16 if (getattr(self.model.synthesis, layer).use_fp16 and self.device=='cuda') else torch.float32
        
        if getattr(self.model.synthesis, layer).is_torgb:
            weight_gain = 1 / np.sqrt(getattr(self.model.synthesis, layer).in_channels * (getattr(self.model.synthesis, layer).conv_kernel ** 2))
            styles = styles * weight_gain
        
        input_gain = getattr(self.model.synthesis, layer).magnitude_ema.rsqrt().to(dtype)
        
        # Execute modulated conv2d.
        x = modulated_conv2d(x=x.to(dtype), w=getattr(self.model.synthesis, layer).weight.to(dtype), s=styles.to(dtype),
        padding=getattr(self.model.synthesis, layer).conv_kernel-1, 
                        demodulate=(not getattr(self.model.synthesis, layer).is_torgb), 
                        input_gain=input_gain.to(dtype))
        
        # Execute bias, filtered leaky ReLU, and clamping.
        gain = 1 if getattr(self.model.synthesis, layer).is_torgb else np.sqrt(2)
        slope = 1 if getattr(self.model.synthesis, layer).is_torgb else 0.2
        
        x = filtered_lrelu.filtered_lrelu(x=x, fu=getattr(self.model.synthesis, layer).up_filter, fd=getattr(self.model.synthesis, layer).down_filter, 
                                            b=getattr(self.model.synthesis, layer).bias.to(x.dtype),
                                            up=getattr(self.model.synthesis, layer).up_factor, down=getattr(self.model.synthesis, layer).down_factor, 
                                            padding=getattr(self.model.synthesis, layer).padding,
                                            gain=gain, slope=slope, clamp=getattr(self.model.synthesis, layer).conv_clamp)
        return x
    
    def generate_flexible_images(self, seed, separation_vector=None, lambd=0):
        if self.space.lower() != 's':
            raise Exception("""This space is not allowed in this function, 
                            select S or use generate_images""")
            
        vec = self.annotations['w_vectors'][seed]
        w_torch = torch.from_numpy(vec).to(self.device)
        W = w_torch.expand((self.decoding_layers, -1)).unsqueeze(0)
        x = self.model.synthesis.input(W[0,0].unsqueeze(0))
        for i, layer in enumerate(self.layers[1:]):
            style = getattr(self.model.synthesis, layer).affine(W[0, i].unsqueeze(0))
            if separation_vector is not None:
                change = torch.from_numpy(separation_vector[i+1].copy()).unsqueeze(0).to(self.device)
                style = torch.add(style, change, alpha=lambd)
            x = self.forward_from_style(x, style, layer)
        
        if self.model.synthesis.output_scale != 1:
                x = x * self.model.synthesis.output_scale

        img = (x.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
        img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
            
        return img

    def generate_changes(self, seed, separation_vector, min_epsilon=-3, max_epsilon=3, count=5, savefig=True, feature=None, method=None):
        """
        The regenerate_images function takes a model, z, and decision_boundary as input.  It then
        constructs an inverse rotation/translation matrix and passes it to the generator.  The generator
        expects this matrix as an inverse to avoid potentially failing numerical operations in the network.
        The function then generates images using G(z_0, label) where z_0 is a linear combination of z and the decision boundary.
        
        :param model: Pass in the model to be used for image generation
        :param z: Generate the starting point of the line
        :param decision_boundary: Generate images along the direction of the decision boundary
        :param min_epsilon: Set the minimum value of lambda
        :param max_epsilon: Set the maximum distance from the original image to generate
        :param count: Determine the number of images that are generated
        :return: A list of images and a list of lambdas
        :doc-author: Trelent
        """
            
        os.makedirs(join(self.repo_folder, 'figures'), exist_ok=True)
        lambdas = np.linspace(min_epsilon, max_epsilon, count)
        images = []
        # Generate images.
        for _, lambd in enumerate(tqdm(lambdas)):
            if self.space.lower() == 's':
                images.append(self.generate_flexible_images(seed, separation_vector=separation_vector, lambd=lambd))
            elif self.space.lower() in ['z', 'w']:
                images.append(self.generate_images(seed, separation_vector=separation_vector, lambd=lambd))
        
        if savefig:
            print('Generating image for color', feature)
            fig, axs = plt.subplots(1, len(images), figsize=(90,20))
            title = 'Disentanglement method: '+ method + ', on feature: ' + feature + ' on space: ' + self.space + ', image seed: ' + str(seed)
            name = '_'.join([method, feature, self.space, str(seed), str(lambdas[-1])])
            fig.suptitle(title, fontsize=20)
                
            for i, (image, lambd) in enumerate(zip(images, lambdas)):
                axs[i].imshow(image)
                axs[i].set_title(np.round(lambd, 2))
            plt.tight_layout()
            plt.savefig(join(self.repo_folder, 'figures', name+'.jpg'))
            plt.close()
        return images, lambdas
    
    def get_verification_score(self, separation_vector, feature_id, samples=10, lambd=1, savefig=False, feature=None, method=None):
        items = random.sample(range(100000), samples)
        hue_low = feature_id * 256 / 12 
        hue_high = (feature_id + 1) * 256 / 12 
        
        matches = 0
        
        for seed in tqdm(items):
            images, lambdas = self.generate_changes(seed, separation_vector, min_epsilon=-lambd, max_epsilon=lambd, count=3, savefig=savefig, feature=feature, method=method)
            try:
                colors_negative = extract_color(images[0], 5, 1, None)
                h0, s0, v0 = ImageColor.getcolor(colors_negative[0], 'HSV')
            
                colors_orig = extract_color(images[1], 5, 1, None)
                h1, s1, v1 = ImageColor.getcolor(colors_orig[0], 'HSV')
                
                colors_positive = extract_color(images[2], 5, 1, None)
                h2, s2, v2 = ImageColor.getcolor(colors_positive[0], 'HSV')
                
                if h1 > hue_low and h1 < hue_high:
                    samples -= 1
                else:
                    if (h0 > hue_low and h0 < hue_high) or (h2 > hue_low and h2 < hue_high):
                        matches += 1
            
            except Exception as e:
                print(e)
        
                
        return np.round(matches / samples, 2)
    

def main():
    repo_folder = '.'
    annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
    with open(annotations_file, 'rb') as f:
        annotations = pickle.load(f)

    df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv')
    df = pd.read_csv(df_file).fillna('#000000')

    model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl')
    with dnnlib.util.open_url(model_file) as f:
        model = legacy.load_network_pkl(f)['G_ema'] # type: ignore

    colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
                   'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
                   'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
    
    scores = []
    kwargs = {'CL method':['LR', 'SVM'], 'C':[0.1, 1], 'sign':[True, False], 'num_factors':[1, 10, 20], 'cutout': [None], 'max_lambda':[18, 3], 'samples':50, 'lambda_verif':[10, 5, 3]}
    
    for space in ['w', 'z', 's']:
        print('Launching experiment with space:', space)
        disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space=space, colors_list=colors_list, compute_s=False)

        for method in ['InterFaceGAN', 'StyleSpace', 'GANSpace']:
            if space != 's' and method == 'InterFaceGAN':
                print('Now obtaining separation vector for using InterfaceGAN')
                for met in kwargs['CL method']:
                    for c in kwargs['C']:
                        separation_vectors = disentanglemnet_exp.InterFaceGAN_separation_vector(method=met, C=c)
                        for i, color in enumerate(colors_list):
                            print('Generating images with variations')
                            for s in range(30):
                                seed = random.randint(0,100000)
                                for eps in kwargs['max_lambda']:
                                    disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=str(method) + '_' + str(met) + '_' + str(c))
                                
                            print('Finally obtaining verification score')
                            for verif in kwargs['lambda_verif']:    
                                score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
                                print('Score for method', method, 'on space', space, 'for color', color, ':', score)
                            
                                scores.append([space, method, color, score, 'classification method:' + met + ', regularization: ' + str(c) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
                        score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
                        print(score_df)
                        score_df.to_csv(join(repo_folder, 'data/scores.csv'))
                    
                        
            elif method == 'StyleSpace':
                print('Now obtaining separation vector for using StyleSpace')
                for sign in kwargs['sign']:
                    for num_factors in kwargs['num_factors']:
                        for cutout in kwargs['cutout']:
                            separation_vectors = disentanglemnet_exp.StyleSpace_separation_vector(sign=sign, num_factors=num_factors, cutout=cutout)
                            for i, color in enumerate(colors_list):
                                print('Generating images with variations')
                                for s in range(30):
                                    seed = random.randint(0,100000)
                                    for eps in kwargs['max_lambda']:
                                        disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method + '_' + str(num_factors) + '_' + str(cutout) + '_' + str(sign))
                                            
                                print('Finally obtaining verification score')
                                for verif in kwargs['lambda_verif']:    
                                    score = disentanglemnet_exp.get_verification_score(separation_vectors[i], i, samples=kwargs['samples'], lambd=verif, savefig=False, feature=color, method=method)
                                    print('Score for method', method, 'on space', space, 'for color', color, ':', score)
                                        
                                    scores.append([space, method, color, score, 'using sign:' + str(sign) + ', number of factors: ' + str(num_factors) + ', using cutout: ' + str(cutout) + ', verification lambda:' + str(verif), ', '.join(list(separation_vectors[i].astype(str)))])
                            score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
                            print(score_df)
                            score_df.to_csv(join(repo_folder, 'data/scores.csv'))
                            
            if space == 'w' and method == 'GANSpace':
                print('Now obtaining separation vector for using GANSpace')
                separation_vectors = disentanglemnet_exp.GANSpace_separation_vectors(100)
                for s in range(30):
                    print('Generating images with variations')
                    seed = random.randint(0,100000)
                    for i in range(100):
                        for eps in kwargs['max_lambda']:
                            disentanglemnet_exp.generate_changes(seed, separation_vectors[i], min_epsilon=-eps, max_epsilon=eps, savefig=True, feature=color, method=method)
                                        
                score = None
                scores.append([space, method, color, score, '100', ', '.join(list(separation_vectors[i].astype(str)))])
            else:
                print('Skipping', method, 'on space', space)
                continue
            
            
    
    score_df = pd.DataFrame(scores, columns=['space', 'method', 'color', 'score', 'kwargs', 'vector'])
    print(score_df)
    score_df.to_csv(join(repo_folder, 'data/scores.csv'))
 
if __name__ == "__main__":
    main()