File size: 4,282 Bytes
52bd88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3722712c",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline  \n",
    "\n",
    "import pandas as pd\n",
    "import pickle\n",
    "import random\n",
    "\n",
    "from PIL import Image, ImageColor\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import numpy as np\n",
    "import torch\n",
    "\n",
    "from backend.disentangle_concepts import *\n",
    "import dnnlib \n",
    "import legacy\n",
    "from backend.color_annotations import *\n",
    "\n",
    "import random\n",
    "\n",
    "from sklearn.linear_model import LinearRegression, LogisticRegression\n",
    "\n",
    "\n",
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fe7acfaf-dc61-4211-9c78-8e4433bc9deb",
   "metadata": {},
   "outputs": [],
   "source": [
    "annotations_file = './data/textile_annotated_files/seeds0000-100000.pkl'\n",
    "with open(annotations_file, 'rb') as f:\n",
    "    annotations = pickle.load(f)\n",
    "\n",
    "ann_df = pd.read_csv('./data/textile_annotated_files/top_three_colours.csv').fillna('#000000')\n",
    "\n",
    "with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f:\n",
    "    model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd114cb1",
   "metadata": {},
   "outputs": [],
   "source": [
    "ann_df = tohsv(ann_df)\n",
    "ann_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "feb64168",
   "metadata": {},
   "outputs": [],
   "source": [
    "X = np.array(annotations['w_vectors']).reshape((len(annotations['w_vectors']), 512))\n",
    "print(X.shape)\n",
    "y_h = np.array(ann_df['H1'].values)\n",
    "y_s = np.array(ann_df['S1'].values)\n",
    "y_v = np.array(ann_df['S1'].values)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e814959",
   "metadata": {},
   "source": [
    "### Unsupervised approaches"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c9493f54",
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.decomposition import PCA"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93596853",
   "metadata": {},
   "outputs": [],
   "source": [
    "pca = PCA(n_components=20)\n",
    "\n",
    "dims_pca = pca.fit_transform(x_trainhc.T)\n",
    "dims_pca /= np.linalg.norm(dims_pca, axis=0)\n",
    "print(dims_pca.shape, np.linalg.norm(dims_pca, axis=0).shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd0b1501",
   "metadata": {},
   "outputs": [],
   "source": [
    "method = 'PCA dimension'\n",
    "for sep, num in zip(dims_pca.T, range(10)):\n",
    "    images, lambdas = regenerate_images(model, original_image_vec, sep, min_epsilon=-(int(4)), max_epsilon=int(4), count=5, latent_space='W')\n",
    "    fig, axs = plt.subplots(1, len(images), figsize=(50,10))\n",
    "    fig.suptitle(method +': ' + str(num), fontsize=20)\n",
    "    for i,im in enumerate(images):\n",
    "        axs[i].imshow(im)\n",
    "        axs[i].set_title(np.round(lambdas[i], 2))\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e0c7808",
   "metadata": {},
   "source": [
    "## dimensionality reduction e vediamo dove finiscono i vari colori"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "833ed31f",
   "metadata": {},
   "source": [
    "## clustering per vedere quali sono i centroid di questo spazio e se ci sono regioni determinate dai colori"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7c19e820",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}