Spaces:
Runtime error
Runtime error
File size: 10,627 Bytes
2cafca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
#!/usr/bin/env python
import numpy as np
import pandas as pd
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import random
from os.path import join
import os
import pickle
import torch
import matplotlib.pyplot as plt
import PIL
from PIL import Image, ImageColor
import sys
sys.path.append('backend')
from color_annotations import extract_color
from networks_stylegan3 import *
sys.path.append('.')
import dnnlib
import legacy
def hex2rgb(hex_value):
h = hex_value.strip("#")
rgb = tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
return rgb
def rgb2hsv(r, g, b):
# Normalize R, G, B values
r, g, b = r / 255.0, g / 255.0, b / 255.0
# h, s, v = hue, saturation, value
max_rgb = max(r, g, b)
min_rgb = min(r, g, b)
difference = max_rgb-min_rgb
# if max_rgb and max_rgb are equal then h = 0
if max_rgb == min_rgb:
h = 0
# if max_rgb==r then h is computed as follows
elif max_rgb == r:
h = (60 * ((g - b) / difference) + 360) % 360
# if max_rgb==g then compute h as follows
elif max_rgb == g:
h = (60 * ((b - r) / difference) + 120) % 360
# if max_rgb=b then compute h
elif max_rgb == b:
h = (60 * ((r - g) / difference) + 240) % 360
# if max_rgb==zero then s=0
if max_rgb == 0:
s = 0
else:
s = (difference / max_rgb) * 100
# compute v
v = max_rgb * 100
# return rounded values of H, S and V
return tuple(map(round, (h, s, v)))
class DisentanglementBase:
def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s=False, variable='H1', categorical=True):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using device', self.device)
self.repo_folder = repo_folder
self.model = model.to(self.device)
self.annotations = annotations
self.df = df
self.space = space
self.categorical = categorical
self.variable = variable
self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512',
'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128',
'L13_256_128', 'L14_256_3']
self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128]
self.decoding_layers = 16
self.colors_list = colors_list
self.to_hsv()
if compute_s:
self.get_s_space()
def to_hsv(self):
"""
The tohsv function takes the top 3 colors of each image and converts them to HSV values.
It then adds these values as new columns in the dataframe.
:param self: Allow the function to access the dataframe
:return: The dataframe with the new columns added
:doc-author: Trelent
"""
print('Adding HSV encoding')
self.df['H1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
self.df['H2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
self.df['H3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
self.df['S1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
self.df['S2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
self.df['S3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
self.df['V1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
self.df['V2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
self.df['V3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
print('Adding RGB encoding')
self.df['R1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
self.df['R2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
self.df['R3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
self.df['G1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
self.df['G2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
self.df['G3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
self.df['B1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
self.df['B2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
self.df['B3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
return self.df
def get_encoded_latent(self):
# ... (existing code for getX)
if self.space.lower() == 'w':
X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512))
elif self.space.lower() == 'z':
X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512))
elif self.space.lower() == 's':
concat_v = []
for i in range(len(self.annotations['w_vectors'])):
concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1))
X = np.array(concat_v)
X = X[:, 0, :]
else:
Exception("Sorry, option not available, select among Z, W, S")
print('Shape embedding:', X.shape)
return X
def get_train_val(self, extremes=False):
X = self.get_encoded_latent()
y = np.array(self.df[self.variable].values)
if self.categorical:
y_cat = pd.cut(y,
bins=[x * 360 / len(self.colors_list) if x < len(self.colors_list)
else 360 for x in range(len(self.colors_list) + 1)],
labels=self.colors_list
).fillna(self.colors_list[0])
x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
else:
if extremes:
# Calculate the number of elements to consider (10% of array size)
num_elements = int(0.2 * len(y))
# Get indices of the top num_elements maximum values
top_indices = np.argpartition(array, -num_elements)[-num_elements:]
bottom_indices = np.argpartition(array, -num_elements)[:num_elements]
y_ext = y[top_indices + bottom_indices, :]
X_ext = X[top_indices + bottom_indices, :]
x_train, x_val, y_train, y_val = train_test_split(X_ext, y_ext, test_size=0.2)
else:
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
return x_train, x_val, y_train, y_val
def generate_orig_image(self, vec, seed=False):
"""
The generate_original_image function takes in a latent vector and the model,
and returns an image generated from that latent vector.
:param z: Generate the image
:param model: Generate the image
:return: A pil image
:doc-author: Trelent
"""
G = self.model.to(self.device) # type: ignore
# Labels.
label = torch.zeros([1, G.c_dim], device=self.device)
if seed:
seed = vec
vec = self.annotations['z_vectors'][seed]
Z = torch.from_numpy(vec.copy()).to(self.device)
img = G(Z, label, truncation_psi=1, noise_mode='const')
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
return img
def main():
repo_folder = '.'
annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv')
df = pd.read_csv(df_file).fillna('#000000')
model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl')
with dnnlib.util.open_url(model_file) as f:
model = legacy.load_network_pkl(f)['G_ema'] # type: ignore
colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
colors_list = ['Red Orange', 'Yellow', 'Green', 'Light Blue',
'Blue', 'Purple', 'Pink']
disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space='w', colors_list=colors_list)
# x_train, x_val, y_train, y_val = disentanglemnet_exp.get_train_val()
# print(colors_list)
# print(np.unique(y_train, return_counts=True))
# for i, color in enumerate(colors_list):
# idxs = np.where(y_train == color)
# x_color = x_train[idxs][:30, :]
# print(x_color.shape)
# print('Generating images of color ' + color)
# for j, vec in enumerate(x_color):
# vec = np.expand_dims(vec, axis=0)
# img = disentanglemnet_exp.generate_orig_image(vec)
# img.save(f'{repo_folder}/colors_test/color_{color}_{j}.png')
df = disentanglemnet_exp.to_hsv()
df['color'] = pd.cut(df['H1'],
bins=[x * 360 / len(colors_list) if x < len(colors_list)
else 360 for x in range(len(colors_list) + 1)],
labels=colors_list
).fillna(colors_list[0])
print(df['color'].value_counts())
df['seed'] = df['fname'].str.split('/').apply(lambda x: x[-1]).str.replace('seed', '').str.replace('.png','').astype(int)
print(df[df['seed'] == 3][['H1', 'S1', 'V1', 'R1', 'B1', 'G1']])
for i, color in enumerate(colors_list):
idxs = df['color'] == color
x_color = df['seed'][idxs][:30]
print('Generating images of color ' + color)
for j, vec in enumerate(x_color):
img = disentanglemnet_exp.generate_orig_image(int(vec), seed=True)
img.save(f'{repo_folder}/colors_test/color_{color}_{j}corrected.png')
if __name__ == "__main__":
main() |