File size: 10,627 Bytes
2cafca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python

import numpy as np
import pandas as pd

from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.model_selection import train_test_split

from tqdm import tqdm
import random
from os.path import join
import os
import pickle

import torch

import matplotlib.pyplot as plt
import PIL
from PIL import Image, ImageColor

import sys
sys.path.append('backend')
from color_annotations import extract_color
from networks_stylegan3 import *
sys.path.append('.')

import dnnlib 
import legacy

def hex2rgb(hex_value):
    h = hex_value.strip("#") 
    rgb = tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
    return rgb

def rgb2hsv(r, g, b):
    # Normalize R, G, B values
    r, g, b = r / 255.0, g / 255.0, b / 255.0
    
    # h, s, v = hue, saturation, value
    max_rgb = max(r, g, b)    
    min_rgb = min(r, g, b)   
    difference = max_rgb-min_rgb 
    
    # if max_rgb and max_rgb are equal then h = 0
    if max_rgb == min_rgb:
        h = 0
    
    # if max_rgb==r then h is computed as follows
    elif max_rgb == r:
        h = (60 * ((g - b) / difference) + 360) % 360
    
    # if max_rgb==g then compute h as follows
    elif max_rgb == g:
        h = (60 * ((b - r) / difference) + 120) % 360
    
    # if max_rgb=b then compute h
    elif max_rgb == b:
        h = (60 * ((r - g) / difference) + 240) % 360
    
    # if max_rgb==zero then s=0
    if max_rgb == 0:
        s = 0
    else:
        s = (difference / max_rgb) * 100
    
    # compute v
    v = max_rgb * 100
    # return rounded values of H, S and V
    return tuple(map(round, (h, s, v)))
 

class DisentanglementBase:
    def __init__(self, repo_folder, model, annotations, df, space, colors_list, compute_s=False, variable='H1', categorical=True):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print('Using device', self.device)
        self.repo_folder = repo_folder
        self.model = model.to(self.device)
        self.annotations = annotations
        self.df = df
        self.space = space
        self.categorical = categorical
        self.variable = variable
        
        self.layers = ['input', 'L0_36_512', 'L1_36_512', 'L2_36_512', 'L3_52_512',
                       'L4_52_512', 'L5_84_512', 'L6_84_512', 'L7_148_512', 'L8_148_512', 
                       'L9_148_362', 'L10_276_256', 'L11_276_181', 'L12_276_128', 
                       'L13_256_128', 'L14_256_3']
        self.layers_shapes = [4, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 362, 256, 181, 128, 128]
        self.decoding_layers = 16
        self.colors_list = colors_list
        
        self.to_hsv()
        if compute_s:
            self.get_s_space()
        

    def to_hsv(self):
        """
        The tohsv function takes the top 3 colors of each image and converts them to HSV values.
        It then adds these values as new columns in the dataframe.
        
        :param self: Allow the function to access the dataframe
        :return: The dataframe with the new columns added
        :doc-author: Trelent
        """
        print('Adding HSV encoding')
        self.df['H1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
        self.df['H2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
        self.df['H3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[0])
        
        self.df['S1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
        self.df['S2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
        self.df['S3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[1])
        
        self.df['V1'] = self.df['top1col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
        self.df['V2'] = self.df['top2col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
        self.df['V3'] = self.df['top3col'].map(lambda x: rgb2hsv(*hex2rgb(x))[2])
        
        print('Adding RGB encoding')
        self.df['R1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
        self.df['R2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
        self.df['R3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[0])
        
        self.df['G1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
        self.df['G2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
        self.df['G3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[1])
        
        self.df['B1'] = self.df['top1col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
        self.df['B2'] = self.df['top2col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
        self.df['B3'] = self.df['top3col'].map(lambda x: ImageColor.getcolor(x, 'RGB')[2])
        return self.df
    
    def get_encoded_latent(self):
        # ... (existing code for getX)
        if self.space.lower() == 'w':
            X = np.array(self.annotations['w_vectors']).reshape((len(self.annotations['w_vectors']), 512))
        elif self.space.lower() == 'z':
            X = np.array(self.annotations['z_vectors']).reshape((len(self.annotations['z_vectors']), 512))
        elif self.space.lower() == 's':
            concat_v = []
            for i in range(len(self.annotations['w_vectors'])):
                concat_v.append(np.concatenate(self.annotations['s_vectors'][i], axis=1))
            X = np.array(concat_v)
            X = X[:, 0, :]
        else:
            Exception("Sorry, option not available, select among Z, W, S")
            
        print('Shape embedding:', X.shape)
        return X
    
    def get_train_val(self, extremes=False):
        X = self.get_encoded_latent()
        y = np.array(self.df[self.variable].values)
        if self.categorical:
            y_cat = pd.cut(y, 
                            bins=[x * 360 / len(self.colors_list) if x < len(self.colors_list) 
                                  else 360 for x in range(len(self.colors_list) + 1)],
                            labels=self.colors_list
                            ).fillna(self.colors_list[0])
            x_train, x_val, y_train, y_val = train_test_split(X, y_cat, test_size=0.2)
        else:
            if extremes:
                # Calculate the number of elements to consider (10% of array size)
                num_elements = int(0.2 * len(y))
                # Get indices of the top num_elements maximum values
                top_indices = np.argpartition(array, -num_elements)[-num_elements:]
                bottom_indices = np.argpartition(array, -num_elements)[:num_elements]
                y_ext = y[top_indices + bottom_indices, :]
                X_ext = X[top_indices + bottom_indices, :]
                x_train, x_val, y_train, y_val = train_test_split(X_ext, y_ext, test_size=0.2)
            else:
                x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
        return x_train, x_val, y_train, y_val
    
    def generate_orig_image(self, vec, seed=False):
        """
        The generate_original_image function takes in a latent vector and the model,
        and returns an image generated from that latent vector.
        
        
        :param z: Generate the image
        :param model: Generate the image
        :return: A pil image
        :doc-author: Trelent
        """
        G = self.model.to(self.device) # type: ignore
        # Labels.
        label = torch.zeros([1, G.c_dim], device=self.device)
        if seed:
            seed = vec
            vec = self.annotations['z_vectors'][seed]
            
        Z = torch.from_numpy(vec.copy()).to(self.device)
        img = G(Z, label, truncation_psi=1, noise_mode='const')
        img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
        img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
        return img
            
def main():
    repo_folder = '.'
    annotations_file = join(repo_folder, 'data/textile_annotated_files/seeds0000-100000_S.pkl')
    with open(annotations_file, 'rb') as f:
        annotations = pickle.load(f)

    df_file = join(repo_folder, 'data/textile_annotated_files/top_three_colours.csv')
    df = pd.read_csv(df_file).fillna('#000000')

    model_file = join(repo_folder, 'data/textile_model_files/network-snapshot-005000.pkl')
    with dnnlib.util.open_url(model_file) as f:
        model = legacy.load_network_pkl(f)['G_ema'] # type: ignore

    colors_list = ['Red', 'Orange', 'Yellow', 'Yellow Green', 'Chartreuse Green',
                   'Kelly Green', 'Green Blue Seafoam', 'Cyan Blue',
                   'Warm Blue', 'Indigo', 'Purple Magenta', 'Magenta Pink']
    colors_list = ['Red Orange', 'Yellow', 'Green', 'Light Blue',
                   'Blue', 'Purple', 'Pink']
    
    
    disentanglemnet_exp = DisentanglementBase(repo_folder, model, annotations, df, space='w', colors_list=colors_list)
    # x_train, x_val, y_train, y_val = disentanglemnet_exp.get_train_val()
    # print(colors_list)
    # print(np.unique(y_train, return_counts=True))
    
    
    # for i, color in enumerate(colors_list):
    #     idxs = np.where(y_train == color)
    #     x_color = x_train[idxs][:30, :]
    #     print(x_color.shape)
    #     print('Generating images of color ' + color)
    #     for j, vec in enumerate(x_color):
    #         vec = np.expand_dims(vec, axis=0)
    #         img = disentanglemnet_exp.generate_orig_image(vec)
    #         img.save(f'{repo_folder}/colors_test/color_{color}_{j}.png')
                                            
    df = disentanglemnet_exp.to_hsv()
    df['color'] = pd.cut(df['H1'], 
                        bins=[x * 360 / len(colors_list) if x < len(colors_list) 
                              else 360 for x in range(len(colors_list) + 1)],
                            labels=colors_list
                            ).fillna(colors_list[0])  
    
    print(df['color'].value_counts())
    df['seed'] = df['fname'].str.split('/').apply(lambda x: x[-1]).str.replace('seed', '').str.replace('.png','').astype(int)
    print(df[df['seed'] == 3][['H1', 'S1', 'V1', 'R1', 'B1', 'G1']])
    for i, color in enumerate(colors_list):
        idxs = df['color'] == color
        x_color = df['seed'][idxs][:30]
        print('Generating images of color ' + color)
        for j, vec in enumerate(x_color):
            img = disentanglemnet_exp.generate_orig_image(int(vec), seed=True)
            img.save(f'{repo_folder}/colors_test/color_{color}_{j}corrected.png')
            
if __name__ == "__main__":
    main()