Spaces:
Runtime error
Runtime error
File size: 8,329 Bytes
fcc16aa e6dc87e 1dcdb58 e6dc87e fcc16aa e6dc87e 1efb52e e6dc87e fcc16aa e6dc87e fcc16aa e6dc87e fcc16aa e6dc87e fcc16aa ae2da92 1cb3b5a fcc16aa ae2da92 e6dc87e ae2da92 e6dc87e ae2da92 e6dc87e 1cb3b5a ae2da92 1cb3b5a e6dc87e ae2da92 e6dc87e ae2da92 e6dc87e 1cb3b5a ae2da92 3f788ef e6dc87e ae2da92 1cb3b5a ae2da92 1cb3b5a e6dc87e ae2da92 e6dc87e ae2da92 e6dc87e ae2da92 1cb3b5a ae2da92 1cb3b5a e6dc87e ae2da92 1cb3b5a ae2da92 1cb3b5a e6dc87e 17c9a9e ae2da92 17c9a9e ae2da92 e6dc87e ae2da92 e6dc87e 4fd5179 10930fc e6dc87e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
import streamlit.components.v1 as components
import dnnlib
import legacy
import pickle
import pandas as pd
import numpy as np
from pyvis.network import Network
import random
from sklearn.metrics.pairwise import cosine_similarity
from matplotlib.backends.backend_agg import RendererAgg
from backend.disentangle_concepts import *
_lock = RendererAgg.lock
HIGHTLIGHT_COLOR = '#e7bcc5'
st.set_page_config(layout='wide')
st.title('Comparison among color directions')
st.write('> **How do the color directions relate to each other?**')
st.write("""
This page provides a simple network-based framework to inspect the vector similarity (cosine similarity) among the found color vectors.
The nodes are the colors chosen for comparison and the strength of the edge represents the similarity.
""")
annotations_file = './data/textile_annotated_files/seeds0000-100000_S.pkl'
with open(annotations_file, 'rb') as f:
annotations = pickle.load(f)
concept_vectors = pd.read_csv('./data/stored_vectors/scores_colors_hsv.csv')
concept_vectors['vector'] = [np.array([float(xx) for xx in x]) for x in concept_vectors['vector'].str.split(', ')]
concept_vectors['score'] = concept_vectors['score'].astype(float)
concept_vectors['sign'] = [True if 'sign:True' in val else False for val in concept_vectors['kwargs']]
concept_vectors['extremes'] = [True if 'extremes method:True' in val else False for val in concept_vectors['kwargs']]
concept_vectors['regularization'] = [float(val.split(',')[1].strip('regularization: ')) if 'regularization:' in val else False for val in concept_vectors['kwargs']]
concept_vectors['cl_method'] = [val.split(',')[0].strip('classification method:') if 'classification method:' in val else False for val in concept_vectors['kwargs']]
concept_vectors['num_factors'] = [int(val.split(',')[1].strip('number of factors:')) if 'number of factors:' in val else False for val in concept_vectors['kwargs']]
concept_vectors = concept_vectors.sort_values('score', ascending=False).reset_index()
with dnnlib.util.open_url('./data/textile_model_files/network-snapshot-005000.pkl') as f:
model = legacy.load_network_pkl(f)['G_ema'].to('cpu') # type: ignore
COLORS_LIST = ['Gray', 'Red Orange', 'Yellow', 'Green', 'Light Blue', 'Blue', 'Purple', 'Pink', 'Saturation', 'Value']
if 'concept_ids' not in st.session_state:
st.session_state.concept_ids = COLORS_LIST
if 'sign' not in st.session_state:
st.session_state.sign = False
if 'extremes' not in st.session_state:
st.session_state.extremes = False
if 'regularization' not in st.session_state:
st.session_state.regularization = False
if 'cl_method' not in st.session_state:
st.session_state.cl_method = False
if 'num_factors' not in st.session_state:
st.session_state.num_factors = False
if 'best' not in st.session_state:
st.session_state.best = True
# ----------------------------- INPUT ----------------------------------
st.header('Input')
input_col_1, input_col_2 = st.columns([1,1])
# --------------------------- INPUT column 1 ---------------------------
with input_col_1:
with st.form('text_form'):
# image_id = st.number_input('Image ID: ', format='%d', step=1)
st.write('**Choose a series of colors to compare**')
# chosen_text_id_input = st.empty()
# concept_id = chosen_text_id_input.text_input('Concept:', value=st.session_state.concept_id)
concept_ids = st.multiselect('Color (including Saturation and Value):', tuple(COLORS_LIST), default=COLORS_LIST)
choose_text_button = st.form_submit_button('Choose the defined colors')
if choose_text_button:
st.session_state.concept_ids = list(concept_ids)
with input_col_2:
with st.form('text_form_1'):
st.write('Use the best vectors (after hyperparameter tuning)')
best = st.selectbox('Option:', tuple([True, False]), index=0)
sign = True
num_factors=10
cl_method='LR'
regularization=0.1
extremes=True
if st.session_state.best is False:
st.write('Options for StyleSpace (not available for Saturation and Value)')
sign = st.selectbox('Sign option:', tuple([True, False]), index=1)
num_factors = st.selectbox('Number of factors option:', tuple([1, 5, 10, 20, False]), index=4)
st.write('Options for InterFaceGAN (not available for Saturation and Value)')
cl_method = st.selectbox('Classification method option:', tuple(['LR', 'SVM', False]), index=2)
regularization = st.selectbox('Regularization option:', tuple([0.1, 1.0, False]), index=2)
st.write('Options for InterFaceGAN (only for Saturation and Value)')
extremes = st.selectbox('Extremes option:', tuple([True, False]), index=1)
choose_options_button = st.form_submit_button('Choose the defined options')
if choose_options_button:
st.session_state.best = best
if st.session_state.best is False:
st.session_state.sign = sign
st.session_state.num_factors = num_factors
st.session_state.cl_method = cl_method
st.session_state.regularization = regularization
st.session_state.extremes = extremes
# ---------------------------- SET UP OUTPUT ------------------------------
epsilon_container = st.empty()
st.header('Comparison')
st.subheader('Color vectors')
header_col_1, header_col_2 = st.columns([3,1])
output_col_1, output_col_2 = st.columns([3,1])
# ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
if st.session_state.best:
tmp = concept_vectors[concept_vectors['color'].isin(st.session_state.concept_ids)].groupby('color').first().reset_index()
else:
tmp = concept_vectors[concept_vectors['color'].isin(st.session_state.concept_ids)]
tmp = tmp[tmp['sign'] == st.session_state.sign][tmp['extremes'] == st.session_state.extremes][tmp['num_factors'] == st.session_state.num_factors][tmp['cl_method'] == st.session_state.cl_method][tmp['regularization'] == st.session_state.regularization]
info = tmp.loc[:, ['vector', 'score', 'color', 'kwargs']].values
concept_ids = [i[2] for i in info] #+ ' ' + i[3]
with header_col_1:
st.write('### Similarity graph')
with header_col_2:
st.write('### Information')
with output_col_2:
for i,concept_id in enumerate(concept_ids):
st.write(f'''Color: {info[i][2]}.\
Settings: {info[i][3]}\
''')
with output_col_1:
edges = []
for i in range(len(concept_ids)):
for j in range(len(concept_ids)):
if i != j and info[i][2] != info[j][2]:
print(f'Similarity between {concept_ids[i]} and {concept_ids[j]}')
similarity = cosine_similarity(info[i][0].reshape(1, -1), info[j][0].reshape(1, -1))
print(np.round(similarity[0][0], 3))
edges.append((concept_ids[i], concept_ids[j], np.round(similarity[0][0] + 0.001, 3)))
net = Network(height="750px", width="100%",)
for e in edges:
src = e[0]
dst = e[1]
w = e[2]
net.add_node(src, src, title=src)
net.add_node(dst, dst, title=dst)
net.add_edge(src, dst, value=w, title=src + ' to ' + dst + ' similarity ' +str(w))
# Generate network with specific layout settings
net.repulsion(
node_distance=420,
central_gravity=0.33,
spring_length=110,
spring_strength=0.10,
damping=0.95
)
# Save and read graph as HTML file (on Streamlit Sharing)
try:
path = '/tmp'
net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8')
# Save and read graph as HTML file (locally)
except:
path = '/html_files'
net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html', 'r', encoding='utf-8')
# Load HTML file in HTML component for display on Streamlit page
components.html(HtmlFile.read(), height=435)
|