File size: 13,180 Bytes
98a3af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python3

import argparse
import os
import random
import time
import glob

import cv2
import numpy as np
import torch


class PedestrianDetector:
    def __init__(self,
                 model_paths,
                 score_threshold=0.3,
                 target_size=(800, 1333),
                 tta=False,
                 tile_grid=(1, 1),
                 nms_thr=0.5):
        """
        Args:
          model_path (str): path to traced .pt model
          score_threshold (float): minimum score to keep a box
          target_size (h, w): network input size
          tta (bool): if True, do horizontal-flip TTA
          tile_grid (rows, cols): if >1, split the image into that many tiles
          nms_thr (float): IoU threshold for merging overlapping detections (0 to disable)
        """
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.score_threshold = score_threshold
        self.target_size = target_size
        self.tta = tta
        self.tile_grid = tuple(tile_grid)
        self.nms_thr = nms_thr

        self.models = [
            self._load_model(model_path)
            for model_path in model_paths
        ]

        # same normalization as used in training
        self.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
        self.std = np.array([58.395, 57.12, 57.375], dtype=np.float32)

    def _load_model(self, model_path):
        assert model_path.endswith('.pt') or '_traced' in model_path, \
            f"Expected a traced .pt model, got {model_path}"
        m = torch.jit.load(model_path, map_location=self.device)
        m.eval()
        return m.to(self.device)

    def _preprocess_image(self, image):
        h, w = image.shape[:2]
        scale = min(self.target_size[0] / h, self.target_size[1] / w)
        new_h, new_w = int(h * scale), int(w * scale)
        resized = cv2.resize(image, (new_w, new_h))

        pad_h = self.target_size[0] - new_h
        pad_w = self.target_size[1] - new_w
        padded = cv2.copyMakeBorder(
            resized, 0, pad_h, 0, pad_w,
            cv2.BORDER_CONSTANT, value=(0, 0, 0)
        )

        norm = (padded.astype(np.float32) - self.mean) / self.std
        tensor = torch.from_numpy(norm.transpose(2, 0, 1))[None].float().to(self.device)
        return tensor, scale

    def _postprocess_detections(self, output):
        """
        output from model is assumed to be (bboxes, _)
        where bboxes[0].cpu().numpy() is Nx5: [x1, y1, x2, y2, score]
        """
        bboxes, _ = output
        b_np = bboxes[0].cpu().numpy()
        scores = b_np[:, 4]
        mask = scores >= self.score_threshold
        if not mask.any():
            return np.zeros((0, 5), dtype=np.float32)
        valid = b_np[mask]
        return valid  # shape (M,5): x1,y1,x2,y2,score

    def _rescale_bboxes(self, dets, scale):
        # input dets: (N,5): x1,y1,x2,y2,score
        if dets.shape[0] == 0:
            return dets
        dets[:, :4] = dets[:, :4] / scale
        return dets

    @staticmethod
    def _nms(dets, iou_thr):
        """
        dets: np.ndarray (N,5) => [score, x1, y1, x2, y2]
        returns a subset of dets after non-maximum suppression
        """
        if dets.shape[0] == 0 or iou_thr <= 0:
            return dets
        x1 = dets[:, 1]
        y1 = dets[:, 2]
        x2 = dets[:, 3]
        y2 = dets[:, 4]
        scores = dets[:, 0]
        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])
            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            iou = inter / (areas[i] + areas[order[1:]] - inter)
            inds = np.where(iou <= iou_thr)[0]
            order = order[inds + 1]
        return dets[keep]

    def _predict_simple(self, img):
        """
        Single-pass inference (no TTA, no tiling).
        Returns list of [score, x1, y1, x2, y2].
        """
        preds = []
        tensor, scale = self._preprocess_image(img)
        for model in self.models:
            with torch.no_grad():
                out = model(tensor)
            dets = self._postprocess_detections(out)  # (M,5) x1,y1,x2,y2,score
            if dets.shape[0] == 0:
                return []
            dets = self._rescale_bboxes(dets, scale)
            # reorder to [score, x1, y1, x2, y2]
            preds.append(np.stack([dets[:, 4], dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3]], axis=1))
        return np.concatenate(preds, axis=0)

    def _predict_tta(self, img):
        """
        Horizontal-flip augmentation. Merge original + flipped.
        """
        h, w = img.shape[:2]
        all_dets = []

        # 1) original
        det0 = self._predict_simple(img)
        if len(det0) > 0:
            all_dets.append(det0)

        # 2) horizontal flip
        img_f = img[:, ::-1, :]
        detf = self._predict_simple(img_f)
        if len(detf) > 0:
            detf = detf.copy()
            # detf[:,1]=x1, detf[:,3]=x2
            x1 = detf[:, 1].copy()
            x2 = detf[:, 3].copy()
            detf[:, 1] = w - x2
            detf[:, 3] = w - x1
            # y coords & score unchanged
            all_dets.append(detf)

        if not all_dets:
            return []

        merged = np.vstack(all_dets)  # shape (K,5)
        if self.nms_thr > 0:
            merged = self._nms(merged, self.nms_thr)
        return merged.tolist()

    def _predict_tiles(self, img):
        """
        Split img into grid of tiles, optionally TTA each tile,
        then offset coordinates and merge with NMS.
        """
        h, w = img.shape[:2]
        rows, cols = self.tile_grid
        tile_h = int(np.ceil(h / rows))
        tile_w = int(np.ceil(w / cols))

        all_dets = []
        for i in range(rows):
            y0 = i * tile_h
            y1 = min(y0 + tile_h, h)
            for j in range(cols):
                x0 = j * tile_w
                x1 = min(x0 + tile_w, w)
                tile = img[y0:y1, x0:x1]
                if tile.size == 0:
                    continue

                if self.tta:
                    dets_tile = self._predict_tta(tile)
                else:
                    dets_tile = self._predict_simple(tile)

                # offset each box
                for dt in dets_tile:
                    score, bx1, by1, bx2, by2 = dt
                    all_dets.append([score,
                                     bx1 + x0,
                                     by1 + y0,
                                     bx2 + x0,
                                     by2 + y0])

        if not all_dets:
            return []
        all_arr = np.array(all_dets, dtype=np.float32)
        if self.nms_thr > 0:
            all_arr = self._nms(all_arr, self.nms_thr)
        return all_arr.tolist()

    def predict(self, image):
        # load image
        if isinstance(image, str):
            img = cv2.imread(image)
            if img is None:
                raise ValueError(f"Could not load image: {image}")
        else:
            img = image

        # choose pipeline
        if self.tile_grid[0] > 1 or self.tile_grid[1] > 1:
            return self._predict_tiles(img)
        elif self.tta:
            return self._predict_tta(img)
        else:
            return self._predict_simple(img)


def parse_args():
    p = argparse.ArgumentParser(
        description='Simple MMPedestron Traced Model Inference with TTA & Tiling')
    p.add_argument('--input',
                   help='Path to image or folder',
                   default='/mnt/archive/person_drone/vtuav_coco/train_rgb_images')
    p.add_argument('--model',
                   help='Path to traced/exported model .pt',
                   default='mmpedestron_onnx_mix_traced.pt')
    p.add_argument('--score-thr', type=float, default=0.4,
                   help='Score threshold')
    p.add_argument('--tta', action='store_true',
                   help='Enable test-time horizontal flip augmentation')
    p.add_argument('--tiles', nargs=2, type=int, default=[1, 1],
                   metavar=('ROWS', 'COLS'),
                   help='Split image into ROWS×COLS tiles (e.g. 2 2)')
    p.add_argument('--nms-thr', type=float, default=0.5,
                   help='IoU threshold for NMS merging (<=0 to disable)')
    return p.parse_args()


def draw_detections(image, detections):
    img = image.copy()
    for det in detections:
        score, x1, y1, x2, y2 = det
        x1, y1, x2, y2 = map(int, (x1, y1, x2, y2))
        if score > 0.8:
            color = (0, 255, 0)
        elif score > 0.5:
            color = (0, 165, 255)
        else:
            color = (0, 0, 255)
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
        lbl = f'{score:.2f}'
        ts = cv2.getTextSize(lbl, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
        cv2.rectangle(img,
                      (x1, y1 - ts[1] - 4),
                      (x1 + ts[0], y1),
                      color, -1)
        cv2.putText(img, lbl, (x1, y1 - 2),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                    (255, 255, 255), 1)
    return img


def find_image_files(input_path):
    if os.path.isfile(input_path):
        if input_path.lower().endswith(('.jpg', '.jpeg', '.png')):
            return [input_path]
        return []
    elif os.path.isdir(input_path):
        imgs = []
        exts = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
        for e in exts:
            imgs.extend(glob.glob(os.path.join(input_path, '**', e),
                                   recursive=True))
        random.shuffle(imgs)
        return imgs
    else:
        return []


def process_image_batch(detector, image_files):
    total = len(image_files)
    for idx, path in enumerate(image_files, 1):
        print(f"\n[{idx}/{total}] {os.path.basename(path)}")
        img = cv2.imread(path)
        if img is None:
            print("  ERROR loading image, skipping")
            continue

        t0 = time.time()
        dets = detector.predict(img)
        t_ms = (time.time() - t0) * 1000
        print(f"  Inference: {t_ms:.1f} ms, {len(dets)} boxes")

        win = f'img'
        cv2.namedWindow(win, cv2.WINDOW_KEEPRATIO)
        vis = draw_detections(img, dets)
        # Print detection details (first 5)
        for j, det in enumerate(dets[:5]):
            score, x1, y1, x2, y2 = det
            print(f"    {j + 1}. conf={score:.3f}, bbox=[{x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f}]")

        cv2.imshow(win, vis)
        key = cv2.waitKey(0)
        if key == 27:  # ESC
            break


def main():
    args = parse_args()

    if not os.path.exists(args.input):
        print(f"ERROR: input not found: {args.input}")
        return
    if not os.path.exists(args.model):
        print(f"ERROR: model not found: {args.model}")
        return

    ims = find_image_files(args.input)
    if not ims:
        print("No images found.")
        return
    
    print("MMPedestron Inference with TTA & Tiling")
    print(f"Input: {args.input}")
    print(f"Model: {args.model}")
    print(f"Found {len(ims)} image(s).")
    print(f"TTA: {'enabled' if args.tta else 'disabled'}")
    print(f"Tiles: {args.tiles[0]}x{args.tiles[1]}")
    print(f"NMS threshold: {args.nms_thr}")

    try:
        detector = PedestrianDetector(
            model_paths=["mmpedestron_onnx_mix_traced.pt", "mmpedestron_onnx_v2_traced.pt"],
            score_threshold=args.score_thr,
            tta=args.tta,
            tile_grid=(args.tiles[0], args.tiles[1]),
            nms_thr=args.nms_thr
        )

        # single vs batch
        if len(ims) == 1:
            print(f"Processing single image: {os.path.basename(ims[0])}")
            img = cv2.imread(ims[0])
            start_time = time.time()
            dets = detector.predict(img)
            inference_time = (time.time() - start_time) * 1000
            
            print(f"Inference time: {inference_time:.1f} ms")
            print(f"Detected {len(dets)} boxes")
            
            if dets:
                vis = draw_detections(img, dets)
                cv2.imshow('Result', vis)
                cv2.waitKey(0)
                cv2.destroyAllWindows()
                
                for i, det in enumerate(dets[:5]):
                    score, x1, y1, x2, y2 = det
                    print(f"  {i + 1}. conf={score:.3f}, bbox=[{x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f}]")
            else:
                cv2.imshow('No Detections', img)
                cv2.waitKey(0)
                cv2.destroyAllWindows()
        else:
            print("Starting batch processing...")
            process_image_batch(detector, ims)

    except Exception as e:
        print(f"Error: {str(e)}")
        import traceback
        traceback.print_exc()


if __name__ == '__main__':
    main()