Spaces:
Sleeping
Sleeping
File size: 13,180 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
#!/usr/bin/env python3
import argparse
import os
import random
import time
import glob
import cv2
import numpy as np
import torch
class PedestrianDetector:
def __init__(self,
model_paths,
score_threshold=0.3,
target_size=(800, 1333),
tta=False,
tile_grid=(1, 1),
nms_thr=0.5):
"""
Args:
model_path (str): path to traced .pt model
score_threshold (float): minimum score to keep a box
target_size (h, w): network input size
tta (bool): if True, do horizontal-flip TTA
tile_grid (rows, cols): if >1, split the image into that many tiles
nms_thr (float): IoU threshold for merging overlapping detections (0 to disable)
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.score_threshold = score_threshold
self.target_size = target_size
self.tta = tta
self.tile_grid = tuple(tile_grid)
self.nms_thr = nms_thr
self.models = [
self._load_model(model_path)
for model_path in model_paths
]
# same normalization as used in training
self.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
self.std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
def _load_model(self, model_path):
assert model_path.endswith('.pt') or '_traced' in model_path, \
f"Expected a traced .pt model, got {model_path}"
m = torch.jit.load(model_path, map_location=self.device)
m.eval()
return m.to(self.device)
def _preprocess_image(self, image):
h, w = image.shape[:2]
scale = min(self.target_size[0] / h, self.target_size[1] / w)
new_h, new_w = int(h * scale), int(w * scale)
resized = cv2.resize(image, (new_w, new_h))
pad_h = self.target_size[0] - new_h
pad_w = self.target_size[1] - new_w
padded = cv2.copyMakeBorder(
resized, 0, pad_h, 0, pad_w,
cv2.BORDER_CONSTANT, value=(0, 0, 0)
)
norm = (padded.astype(np.float32) - self.mean) / self.std
tensor = torch.from_numpy(norm.transpose(2, 0, 1))[None].float().to(self.device)
return tensor, scale
def _postprocess_detections(self, output):
"""
output from model is assumed to be (bboxes, _)
where bboxes[0].cpu().numpy() is Nx5: [x1, y1, x2, y2, score]
"""
bboxes, _ = output
b_np = bboxes[0].cpu().numpy()
scores = b_np[:, 4]
mask = scores >= self.score_threshold
if not mask.any():
return np.zeros((0, 5), dtype=np.float32)
valid = b_np[mask]
return valid # shape (M,5): x1,y1,x2,y2,score
def _rescale_bboxes(self, dets, scale):
# input dets: (N,5): x1,y1,x2,y2,score
if dets.shape[0] == 0:
return dets
dets[:, :4] = dets[:, :4] / scale
return dets
@staticmethod
def _nms(dets, iou_thr):
"""
dets: np.ndarray (N,5) => [score, x1, y1, x2, y2]
returns a subset of dets after non-maximum suppression
"""
if dets.shape[0] == 0 or iou_thr <= 0:
return dets
x1 = dets[:, 1]
y1 = dets[:, 2]
x2 = dets[:, 3]
y2 = dets[:, 4]
scores = dets[:, 0]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
iou = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(iou <= iou_thr)[0]
order = order[inds + 1]
return dets[keep]
def _predict_simple(self, img):
"""
Single-pass inference (no TTA, no tiling).
Returns list of [score, x1, y1, x2, y2].
"""
preds = []
tensor, scale = self._preprocess_image(img)
for model in self.models:
with torch.no_grad():
out = model(tensor)
dets = self._postprocess_detections(out) # (M,5) x1,y1,x2,y2,score
if dets.shape[0] == 0:
return []
dets = self._rescale_bboxes(dets, scale)
# reorder to [score, x1, y1, x2, y2]
preds.append(np.stack([dets[:, 4], dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3]], axis=1))
return np.concatenate(preds, axis=0)
def _predict_tta(self, img):
"""
Horizontal-flip augmentation. Merge original + flipped.
"""
h, w = img.shape[:2]
all_dets = []
# 1) original
det0 = self._predict_simple(img)
if len(det0) > 0:
all_dets.append(det0)
# 2) horizontal flip
img_f = img[:, ::-1, :]
detf = self._predict_simple(img_f)
if len(detf) > 0:
detf = detf.copy()
# detf[:,1]=x1, detf[:,3]=x2
x1 = detf[:, 1].copy()
x2 = detf[:, 3].copy()
detf[:, 1] = w - x2
detf[:, 3] = w - x1
# y coords & score unchanged
all_dets.append(detf)
if not all_dets:
return []
merged = np.vstack(all_dets) # shape (K,5)
if self.nms_thr > 0:
merged = self._nms(merged, self.nms_thr)
return merged.tolist()
def _predict_tiles(self, img):
"""
Split img into grid of tiles, optionally TTA each tile,
then offset coordinates and merge with NMS.
"""
h, w = img.shape[:2]
rows, cols = self.tile_grid
tile_h = int(np.ceil(h / rows))
tile_w = int(np.ceil(w / cols))
all_dets = []
for i in range(rows):
y0 = i * tile_h
y1 = min(y0 + tile_h, h)
for j in range(cols):
x0 = j * tile_w
x1 = min(x0 + tile_w, w)
tile = img[y0:y1, x0:x1]
if tile.size == 0:
continue
if self.tta:
dets_tile = self._predict_tta(tile)
else:
dets_tile = self._predict_simple(tile)
# offset each box
for dt in dets_tile:
score, bx1, by1, bx2, by2 = dt
all_dets.append([score,
bx1 + x0,
by1 + y0,
bx2 + x0,
by2 + y0])
if not all_dets:
return []
all_arr = np.array(all_dets, dtype=np.float32)
if self.nms_thr > 0:
all_arr = self._nms(all_arr, self.nms_thr)
return all_arr.tolist()
def predict(self, image):
# load image
if isinstance(image, str):
img = cv2.imread(image)
if img is None:
raise ValueError(f"Could not load image: {image}")
else:
img = image
# choose pipeline
if self.tile_grid[0] > 1 or self.tile_grid[1] > 1:
return self._predict_tiles(img)
elif self.tta:
return self._predict_tta(img)
else:
return self._predict_simple(img)
def parse_args():
p = argparse.ArgumentParser(
description='Simple MMPedestron Traced Model Inference with TTA & Tiling')
p.add_argument('--input',
help='Path to image or folder',
default='/mnt/archive/person_drone/vtuav_coco/train_rgb_images')
p.add_argument('--model',
help='Path to traced/exported model .pt',
default='mmpedestron_onnx_mix_traced.pt')
p.add_argument('--score-thr', type=float, default=0.4,
help='Score threshold')
p.add_argument('--tta', action='store_true',
help='Enable test-time horizontal flip augmentation')
p.add_argument('--tiles', nargs=2, type=int, default=[1, 1],
metavar=('ROWS', 'COLS'),
help='Split image into ROWS×COLS tiles (e.g. 2 2)')
p.add_argument('--nms-thr', type=float, default=0.5,
help='IoU threshold for NMS merging (<=0 to disable)')
return p.parse_args()
def draw_detections(image, detections):
img = image.copy()
for det in detections:
score, x1, y1, x2, y2 = det
x1, y1, x2, y2 = map(int, (x1, y1, x2, y2))
if score > 0.8:
color = (0, 255, 0)
elif score > 0.5:
color = (0, 165, 255)
else:
color = (0, 0, 255)
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
lbl = f'{score:.2f}'
ts = cv2.getTextSize(lbl, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
cv2.rectangle(img,
(x1, y1 - ts[1] - 4),
(x1 + ts[0], y1),
color, -1)
cv2.putText(img, lbl, (x1, y1 - 2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(255, 255, 255), 1)
return img
def find_image_files(input_path):
if os.path.isfile(input_path):
if input_path.lower().endswith(('.jpg', '.jpeg', '.png')):
return [input_path]
return []
elif os.path.isdir(input_path):
imgs = []
exts = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
for e in exts:
imgs.extend(glob.glob(os.path.join(input_path, '**', e),
recursive=True))
random.shuffle(imgs)
return imgs
else:
return []
def process_image_batch(detector, image_files):
total = len(image_files)
for idx, path in enumerate(image_files, 1):
print(f"\n[{idx}/{total}] {os.path.basename(path)}")
img = cv2.imread(path)
if img is None:
print(" ERROR loading image, skipping")
continue
t0 = time.time()
dets = detector.predict(img)
t_ms = (time.time() - t0) * 1000
print(f" Inference: {t_ms:.1f} ms, {len(dets)} boxes")
win = f'img'
cv2.namedWindow(win, cv2.WINDOW_KEEPRATIO)
vis = draw_detections(img, dets)
# Print detection details (first 5)
for j, det in enumerate(dets[:5]):
score, x1, y1, x2, y2 = det
print(f" {j + 1}. conf={score:.3f}, bbox=[{x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f}]")
cv2.imshow(win, vis)
key = cv2.waitKey(0)
if key == 27: # ESC
break
def main():
args = parse_args()
if not os.path.exists(args.input):
print(f"ERROR: input not found: {args.input}")
return
if not os.path.exists(args.model):
print(f"ERROR: model not found: {args.model}")
return
ims = find_image_files(args.input)
if not ims:
print("No images found.")
return
print("MMPedestron Inference with TTA & Tiling")
print(f"Input: {args.input}")
print(f"Model: {args.model}")
print(f"Found {len(ims)} image(s).")
print(f"TTA: {'enabled' if args.tta else 'disabled'}")
print(f"Tiles: {args.tiles[0]}x{args.tiles[1]}")
print(f"NMS threshold: {args.nms_thr}")
try:
detector = PedestrianDetector(
model_paths=["mmpedestron_onnx_mix_traced.pt", "mmpedestron_onnx_v2_traced.pt"],
score_threshold=args.score_thr,
tta=args.tta,
tile_grid=(args.tiles[0], args.tiles[1]),
nms_thr=args.nms_thr
)
# single vs batch
if len(ims) == 1:
print(f"Processing single image: {os.path.basename(ims[0])}")
img = cv2.imread(ims[0])
start_time = time.time()
dets = detector.predict(img)
inference_time = (time.time() - start_time) * 1000
print(f"Inference time: {inference_time:.1f} ms")
print(f"Detected {len(dets)} boxes")
if dets:
vis = draw_detections(img, dets)
cv2.imshow('Result', vis)
cv2.waitKey(0)
cv2.destroyAllWindows()
for i, det in enumerate(dets[:5]):
score, x1, y1, x2, y2 = det
print(f" {i + 1}. conf={score:.3f}, bbox=[{x1:.0f}, {y1:.0f}, {x2:.0f}, {y2:.0f}]")
else:
cv2.imshow('No Detections', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print("Starting batch processing...")
process_image_batch(detector, ims)
except Exception as e:
print(f"Error: {str(e)}")
import traceback
traceback.print_exc()
if __name__ == '__main__':
main()
|