File size: 6,329 Bytes
98a3af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright(c) 2023 lyuwenyu. All Rights Reserved.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

import math
import warnings

from .common import get_activation
from ..core import register


def autopad(k, p=None):
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
    return p

def make_divisible(c, d):
    return math.ceil(c / d) * d


class Conv(nn.Module):
    def __init__(self, cin, cout, k=1, s=1, p=None, g=1, act='silu') -> None:
        super().__init__()
        self.conv = nn.Conv2d(cin, cout, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(cout)
        self.act = get_activation(act, inplace=True)

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, act='silu'):
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1, act=act)
        self.cv2 = Conv(c_, c2, 3, 1, g=g, act=act)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, act='silu'):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1, act=act)
        self.cv2 = Conv(c1, c_, 1, 1, act=act)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0, act=act) for _ in range(n)))
        self.cv3 = Conv(2 * c_, c2, 1, act=act)

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))


class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5, act='silu'):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1, act=act)
        self.cv2 = Conv(c_ * 4, c2, 1, 1, act=act)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))


@register()
class CSPDarkNet(nn.Module):
    __share__ = ['depth_multi', 'width_multi']

    def __init__(self, in_channels=3, width_multi=1.0, depth_multi=1.0, return_idx=[2, 3, -1], act='silu', ) -> None:
        super().__init__()

        channels = [64, 128, 256, 512, 1024]
        channels = [make_divisible(c * width_multi, 8) for c in channels]

        depths = [3, 6, 9, 3]
        depths = [max(round(d * depth_multi), 1) for d in depths]

        self.layers = nn.ModuleList([Conv(in_channels, channels[0], 6, 2, 2, act=act)])
        for i, (c, d) in enumerate(zip(channels, depths), 1):
            layer = nn.Sequential(*[Conv(c, channels[i], 3, 2, act=act), C3(channels[i], channels[i], n=d, act=act)])
            self.layers.append(layer)

        self.layers.append(SPPF(channels[-1], channels[-1], k=5, act=act))

        self.return_idx = return_idx
        self.out_channels = [channels[i] for i in self.return_idx]
        self.strides = [[2, 4, 8, 16, 32][i] for i in self.return_idx]
        self.depths = depths
        self.act = act

    def forward(self, x):
        outputs = []
        for _, m in enumerate(self.layers):
            x = m(x)
            outputs.append(x)

        return [outputs[i] for i in self.return_idx]


@register()
class CSPPAN(nn.Module):
    """
    P5 ---> 1x1  ---------------------------------> concat --> c3 --> det
             | up                                     | conv /2
    P4 ---> concat ---> c3 ---> 1x1  -->  concat ---> c3 -----------> det
                                 | up       | conv /2
    P3 -----------------------> concat ---> c3 ---------------------> det
    """
    __share__ = ['depth_multi', ]

    def __init__(self, in_channels=[256, 512, 1024], depth_multi=1., act='silu') -> None:
        super().__init__()
        depth = max(round(3 * depth_multi), 1)

        self.out_channels = in_channels
        self.fpn_stems = nn.ModuleList([Conv(cin, cout, 1, 1, act=act) for cin, cout in zip(in_channels[::-1], in_channels[::-1][1:])])
        self.fpn_csps = nn.ModuleList([C3(cin, cout, depth, False, act=act) for cin, cout in zip(in_channels[::-1], in_channels[::-1][1:])])

        self.pan_stems = nn.ModuleList([Conv(c, c, 3, 2, act=act) for c in in_channels[:-1]])
        self.pan_csps = nn.ModuleList([C3(c, c, depth, False, act=act) for c in in_channels[1:]])

    def forward(self, feats):
        fpn_feats = []
        for i, feat in enumerate(feats[::-1]):
            if i == 0:
                feat = self.fpn_stems[i](feat)
                fpn_feats.append(feat)
            else:
                _feat = F.interpolate(fpn_feats[-1], scale_factor=2, mode='nearest')
                feat = torch.concat([_feat, feat], dim=1)
                feat = self.fpn_csps[i-1](feat)
                if i < len(self.fpn_stems):
                    feat = self.fpn_stems[i](feat)
                fpn_feats.append(feat)

        pan_feats = []
        for i, feat in enumerate(fpn_feats[::-1]):
            if i == 0:
                pan_feats.append(feat)
            else:
                _feat = self.pan_stems[i-1](pan_feats[-1])
                feat = torch.concat([_feat, feat], dim=1)
                feat = self.pan_csps[i-1](feat)
                pan_feats.append(feat)

        return pan_feats


if __name__ == '__main__':

    data = torch.rand(1, 3, 320, 640)

    width_multi = 0.75
    depth_multi = 0.33

    m = CSPDarkNet(3, width_multi=width_multi, depth_multi=depth_multi, act='silu')
    outputs = m(data)
    print([o.shape for o in outputs])

    m = CSPPAN(in_channels=m.out_channels, depth_multi=depth_multi, act='silu')
    outputs = m(outputs)
    print([o.shape for o in outputs])