File size: 42,317 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import os
import random
from contextlib import contextmanager
from dataclasses import dataclass
from time import time

import torch
import torch.nn.functional as F
import torchaudio
from coqpit import Coqpit
from tqdm import tqdm

from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram
from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, load_voice, wav_to_univnet_mel
from TTS.tts.layers.tortoise.autoregressive import UnifiedVoice
from TTS.tts.layers.tortoise.classifier import AudioMiniEncoderWithClassifierHead
from TTS.tts.layers.tortoise.clvp import CLVP
from TTS.tts.layers.tortoise.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps
from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts
from TTS.tts.layers.tortoise.random_latent_generator import RandomLatentConverter
from TTS.tts.layers.tortoise.tokenizer import VoiceBpeTokenizer
from TTS.tts.layers.tortoise.vocoder import VocConf, VocType
from TTS.tts.layers.tortoise.wav2vec_alignment import Wav2VecAlignment
from TTS.tts.models.base_tts import BaseTTS


def pad_or_truncate(t, length):
    """
    Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
    """
    tp = t[..., :length]
    if t.shape[-1] == length:
        tp = t
    elif t.shape[-1] < length:
        tp = F.pad(t, (0, length - t.shape[-1]))
    return tp


def deterministic_state(seed=None):
    """
    Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
    reproduced.
    """
    seed = int(time()) if seed is None else seed
    torch.manual_seed(seed)
    random.seed(seed)
    # Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary.
    # torch.use_deterministic_algorithms(True)

    return seed


def load_discrete_vocoder_diffuser(
    trained_diffusion_steps=4000,
    desired_diffusion_steps=200,
    cond_free=True,
    cond_free_k=1,
    sampler="ddim",
):
    """
    Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
    """
    return SpacedDiffusion(
        use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]),
        model_mean_type="epsilon",
        model_var_type="learned_range",
        loss_type="mse",
        betas=get_named_beta_schedule("linear", trained_diffusion_steps),
        conditioning_free=cond_free,
        conditioning_free_k=cond_free_k,
        sampler=sampler,
    )


def format_conditioning(clip, cond_length=132300, device="cuda", **kwargs):
    """
    Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
    """
    gap = clip.shape[-1] - cond_length
    if gap < 0:
        clip = F.pad(clip, pad=(0, abs(gap)))
    elif gap > 0:
        rand_start = random.randint(0, gap)
        clip = clip[:, rand_start : rand_start + cond_length]
    mel_clip = TorchMelSpectrogram(**kwargs)(clip.unsqueeze(0)).squeeze(0)
    return mel_clip.unsqueeze(0).to(device)


def fix_autoregressive_output(codes, stop_token, complain=True):
    """
    This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
    trained on and what the autoregressive code generator creates (which has no padding or end).
    This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
    a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
    and copying out the last few codes.

    Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
    """
    # Strip off the autoregressive stop token and add padding.
    stop_token_indices = (codes == stop_token).nonzero()
    if len(stop_token_indices) == 0:
        if complain:
            print(
                "No stop tokens found in one of the generated voice clips. This typically means the spoken audio is "
                "too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, "
                "try breaking up your input text."
            )
        return codes
    codes[stop_token_indices] = 83
    stm = stop_token_indices.min().item()
    codes[stm:] = 83
    if stm - 3 < codes.shape[0]:
        codes[-3] = 45
        codes[-2] = 45
        codes[-1] = 248
    return codes


def do_spectrogram_diffusion(
    diffusion_model,
    diffuser,
    latents,
    conditioning_latents,
    temperature=1,
    verbose=True,
):
    """
    Uses the specified diffusion model to convert discrete codes into a spectrogram.
    """
    with torch.no_grad():
        output_seq_len = (
            latents.shape[1] * 4 * 24000 // 22050
        )  # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
        output_shape = (latents.shape[0], 100, output_seq_len)
        precomputed_embeddings = diffusion_model.timestep_independent(
            latents, conditioning_latents, output_seq_len, False
        )

        noise = torch.randn(output_shape, device=latents.device) * temperature
        mel = diffuser.sample_loop(
            diffusion_model,
            output_shape,
            noise=noise,
            model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings},
            progress=verbose,
        )
        return denormalize_tacotron_mel(mel)[:, :, :output_seq_len]


def classify_audio_clip(clip, model_dir):
    """
    Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
    :param clip: torch tensor containing audio waveform data (get it from load_audio)
    :return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
    """
    classifier = AudioMiniEncoderWithClassifierHead(
        2,
        spec_dim=1,
        embedding_dim=512,
        depth=5,
        downsample_factor=4,
        resnet_blocks=2,
        attn_blocks=4,
        num_attn_heads=4,
        base_channels=32,
        dropout=0,
        kernel_size=5,
        distribute_zero_label=False,
    )
    classifier.load_state_dict(torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu")))
    clip = clip.cpu().unsqueeze(0)
    results = F.softmax(classifier(clip), dim=-1)
    return results[0][0]


def pick_best_batch_size_for_gpu():
    """
    Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give
    you a good shot.
    """
    if torch.cuda.is_available():
        _, available = torch.cuda.mem_get_info()
        availableGb = available / (1024**3)
        batch_size = 1
        if availableGb > 14:
            batch_size = 16
        elif availableGb > 10:
            batch_size = 8
        elif availableGb > 7:
            batch_size = 4
    return batch_size


@dataclass
class TortoiseAudioConfig(Coqpit):
    sample_rate: int = 22050
    diffusion_sample_rate: int = 24000
    output_sample_rate: int = 24000


@dataclass
class TortoiseArgs(Coqpit):
    """A dataclass to represent Tortoise model arguments that define the model structure.

    Args:
        autoregressive_batch_size (int): The size of the auto-regressive batch.
        enable_redaction (bool, optional): Whether to enable redaction. Defaults to True.
        high_vram (bool, optional): Whether to use high VRAM. Defaults to False.
        kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True.
        ar_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None.
        clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None.
        diff_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None.
        num_chars (int, optional): The maximum number of characters to generate. Defaults to 255.
        vocoder (VocType, optional): The vocoder to use for synthesis. Defaults to VocConf.Univnet.

        For UnifiedVoice model:
        ar_max_mel_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604.
        ar_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402.
        ar_max_conditioning_inputs (int, optional): The maximum conditioning inputs for the autoregressive model. Defaults to 2.
        ar_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30.
        ar_model_dim (int, optional): The model dimension for the autoregressive model. Defaults to 1024.
        ar_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16.
        ar_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255.
        ar_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255.
        ar_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False.
        ar_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False.

        For DiffTTS model:
        diff_model_channels (int, optional): The number of channels for the DiffTTS model. Defaults to 1024.
        diff_num_layers (int, optional): The number of layers for the DiffTTS model. Defaults to 10.
        diff_in_channels (int, optional): The input channels for the DiffTTS model. Defaults to 100.
        diff_out_channels (int, optional): The output channels for the DiffTTS model. Defaults to 200.
        diff_in_latent_channels (int, optional): The input latent channels for the DiffTTS model. Defaults to 1024.
        diff_in_tokens (int, optional): The input tokens for the DiffTTS model. Defaults to 8193.
        diff_dropout (int, optional): The dropout percentage for the DiffTTS model. Defaults to 0.
        diff_use_fp16 (bool, optional): Whether to use fp16 for the DiffTTS model. Defaults to False.
        diff_num_heads (int, optional): The number of heads for the DiffTTS model. Defaults to 16.
        diff_layer_drop (int, optional): The layer dropout percentage for the DiffTTS model. Defaults to 0.
        diff_unconditioned_percentage (int, optional): The percentage of unconditioned inputs for the DiffTTS model. Defaults to 0.

        For ConditionalLatentVariablePerseq model:
        clvp_dim_text (int): The dimension of the text input for the CLVP module. Defaults to 768.
        clvp_dim_speech (int): The dimension of the speech input for the CLVP module. Defaults to 768.
        clvp_dim_latent (int): The dimension of the latent representation for the CLVP module. Defaults to 768.
        clvp_num_text_tokens (int): The number of text tokens used by the CLVP module. Defaults to 256.
        clvp_text_enc_depth (int): The depth of the text encoder in the CLVP module. Defaults to 20.
        clvp_text_seq_len (int): The maximum sequence length of the text input for the CLVP module. Defaults to 350.
        clvp_text_heads (int): The number of attention heads used by the text encoder in the CLVP module. Defaults to 12.
        clvp_num_speech_tokens (int): The number of speech tokens used by the CLVP module. Defaults to 8192.
        clvp_speech_enc_depth (int): The depth of the speech encoder in the CLVP module. Defaults to 20.
        clvp_speech_heads (int): The number of attention heads used by the speech encoder in the CLVP module. Defaults to 12.
        clvp_speech_seq_len (int): The maximum sequence length of the speech input for the CLVP module. Defaults to 430.
        clvp_use_xformers (bool): A flag indicating whether the model uses transformers in the CLVP module. Defaults to True.
        duration_const (int): A constant value used in the model. Defaults to 102400.
    """

    autoregressive_batch_size: int = 1
    enable_redaction: bool = False
    high_vram: bool = False
    kv_cache: bool = True
    ar_checkpoint: str = None
    clvp_checkpoint: str = None
    diff_checkpoint: str = None
    num_chars: int = 255
    vocoder: VocType = VocConf.Univnet

    # UnifiedVoice params
    ar_max_mel_tokens: int = 604
    ar_max_text_tokens: int = 402
    ar_max_conditioning_inputs: int = 2
    ar_layers: int = 30
    ar_model_dim: int = 1024
    ar_heads: int = 16
    ar_number_text_tokens: int = 255
    ar_start_text_token: int = 255
    ar_checkpointing: bool = False
    ar_train_solo_embeddings: bool = False

    # DiffTTS params
    diff_model_channels: int = 1024
    diff_num_layers: int = 10
    diff_in_channels: int = 100
    diff_out_channels: int = 200
    diff_in_latent_channels: int = 1024
    diff_in_tokens: int = 8193
    diff_dropout: int = 0
    diff_use_fp16: bool = False
    diff_num_heads: int = 16
    diff_layer_drop: int = 0
    diff_unconditioned_percentage: int = 0

    # clvp params
    clvp_dim_text: int = 768
    clvp_dim_speech: int = 768
    clvp_dim_latent: int = 768
    clvp_num_text_tokens: int = 256
    clvp_text_enc_depth: int = 20
    clvp_text_seq_len: int = 350
    clvp_text_heads: int = 12
    clvp_num_speech_tokens: int = 8192
    clvp_speech_enc_depth: int = 20
    clvp_speech_heads: int = 12
    clvp_speech_seq_len: int = 430
    clvp_use_xformers: bool = True
    # constants
    duration_const: int = 102400


class Tortoise(BaseTTS):
    """Tortoise model class.

    Currently only supports inference.

    Examples:
        >>> from TTS.tts.configs.tortoise_config import TortoiseConfig
        >>> from TTS.tts.models.tortoise import Tortoise
        >>> config = TortoiseConfig()
        >>> model = Tortoise.inif_from_config(config)
        >>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True)
    """

    def __init__(self, config: Coqpit):
        super().__init__(config, ap=None, tokenizer=None)
        self.mel_norm_path = None
        self.config = config
        self.ar_checkpoint = self.args.ar_checkpoint
        self.diff_checkpoint = self.args.diff_checkpoint  # TODO: check if this is even needed
        self.models_dir = config.model_dir
        self.autoregressive_batch_size = (
            pick_best_batch_size_for_gpu()
            if self.args.autoregressive_batch_size is None
            else self.args.autoregressive_batch_size
        )
        self.enable_redaction = self.args.enable_redaction
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if self.enable_redaction:
            self.aligner = Wav2VecAlignment()

        self.tokenizer = VoiceBpeTokenizer()

        self.autoregressive = UnifiedVoice(
            max_mel_tokens=self.args.ar_max_mel_tokens,
            max_text_tokens=self.args.ar_max_text_tokens,
            max_conditioning_inputs=self.args.ar_max_conditioning_inputs,
            layers=self.args.ar_layers,
            model_dim=self.args.ar_model_dim,
            heads=self.args.ar_heads,
            number_text_tokens=self.args.ar_number_text_tokens,
            start_text_token=self.args.ar_start_text_token,
            checkpointing=self.args.ar_checkpointing,
            train_solo_embeddings=self.args.ar_train_solo_embeddings,
        ).cpu()

        self.diffusion = DiffusionTts(
            model_channels=self.args.diff_model_channels,
            num_layers=self.args.diff_num_layers,
            in_channels=self.args.diff_in_channels,
            out_channels=self.args.diff_out_channels,
            in_latent_channels=self.args.diff_in_latent_channels,
            in_tokens=self.args.diff_in_tokens,
            dropout=self.args.diff_dropout,
            use_fp16=self.args.diff_use_fp16,
            num_heads=self.args.diff_num_heads,
            layer_drop=self.args.diff_layer_drop,
            unconditioned_percentage=self.args.diff_unconditioned_percentage,
        ).cpu()

        self.clvp = CLVP(
            dim_text=self.args.clvp_dim_text,
            dim_speech=self.args.clvp_dim_speech,
            dim_latent=self.args.clvp_dim_latent,
            num_text_tokens=self.args.clvp_num_text_tokens,
            text_enc_depth=self.args.clvp_text_enc_depth,
            text_seq_len=self.args.clvp_text_seq_len,
            text_heads=self.args.clvp_text_heads,
            num_speech_tokens=self.args.clvp_num_speech_tokens,
            speech_enc_depth=self.args.clvp_speech_enc_depth,
            speech_heads=self.args.clvp_speech_heads,
            speech_seq_len=self.args.clvp_speech_seq_len,
            use_xformers=self.args.clvp_use_xformers,
        ).cpu()

        self.vocoder = self.args.vocoder.value.constructor().cpu()

        # Random latent generators (RLGs) are loaded lazily.
        self.rlg_auto = None
        self.rlg_diffusion = None

        if self.args.high_vram:
            self.autoregressive = self.autoregressive.to(self.device)
            self.diffusion = self.diffusion.to(self.device)
            self.clvp = self.clvp.to(self.device)
            self.vocoder = self.vocoder.to(self.device)
        self.high_vram = self.args.high_vram

    @contextmanager
    def temporary_cuda(self, model):
        if self.high_vram:
            yield model
        else:
            m = model.to(self.device)
            yield m
            m = model.cpu()

    def get_conditioning_latents(
        self,
        voice_samples,
        return_mels=False,
        latent_averaging_mode=0,
        original_tortoise=False,
    ):
        """
        Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
        These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic
        properties.
        :param voice_samples: List of arbitrary reference clips, which should be *pairs* of torch tensors containing arbitrary kHz waveform data.
        :param latent_averaging_mode: 0/1/2 for following modes:
            0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples
            1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks
            2 - latents will be generated using (almost) entire voice samples, averaged per voice sample
        """
        assert latent_averaging_mode in [
            0,
            1,
            2,
        ], "latent_averaging mode has to be one of (0, 1, 2)"

        with torch.no_grad():
            voice_samples = [[v.to(self.device) for v in ls] for ls in voice_samples]

            auto_conds = []
            for ls in voice_samples:
                auto_conds.append(format_conditioning(ls[0], device=self.device, mel_norm_file=self.mel_norm_path))
            auto_conds = torch.stack(auto_conds, dim=1)
            with self.temporary_cuda(self.autoregressive) as ar:
                auto_latent = ar.get_conditioning(auto_conds)

            diffusion_conds = []

            DURS_CONST = self.args.duration_const
            for ls in voice_samples:
                # The diffuser operates at a sample rate of 24000 (except for the latent inputs)
                sample = torchaudio.functional.resample(ls[0], 22050, 24000) if original_tortoise else ls[1]
                if latent_averaging_mode == 0:
                    sample = pad_or_truncate(sample, DURS_CONST)
                    cond_mel = wav_to_univnet_mel(
                        sample.to(self.device),
                        do_normalization=False,
                        device=self.device,
                    )
                    diffusion_conds.append(cond_mel)
                else:
                    from math import ceil

                    if latent_averaging_mode == 2:
                        temp_diffusion_conds = []
                    for chunk in range(ceil(sample.shape[1] / DURS_CONST)):
                        current_sample = sample[:, chunk * DURS_CONST : (chunk + 1) * DURS_CONST]
                        current_sample = pad_or_truncate(current_sample, DURS_CONST)
                        cond_mel = wav_to_univnet_mel(
                            current_sample.to(self.device),
                            do_normalization=False,
                            device=self.device,
                        )
                        if latent_averaging_mode == 1:
                            diffusion_conds.append(cond_mel)
                        elif latent_averaging_mode == 2:
                            temp_diffusion_conds.append(cond_mel)
                    if latent_averaging_mode == 2:
                        diffusion_conds.append(torch.stack(temp_diffusion_conds).mean(0))
            diffusion_conds = torch.stack(diffusion_conds, dim=1)

            with self.temporary_cuda(self.diffusion) as diffusion:
                diffusion_latent = diffusion.get_conditioning(diffusion_conds)

        if return_mels:
            return auto_latent, diffusion_latent, auto_conds, diffusion_conds
        return auto_latent, diffusion_latent

    def get_random_conditioning_latents(self):
        # Lazy-load the RLG models.
        if self.rlg_auto is None:
            self.rlg_auto = RandomLatentConverter(1024).eval()
            self.rlg_auto.load_state_dict(
                torch.load(
                    os.path.join(self.models_dir, "rlg_auto.pth"),
                    map_location=torch.device("cpu"),
                )
            )
            self.rlg_diffusion = RandomLatentConverter(2048).eval()
            self.rlg_diffusion.load_state_dict(
                torch.load(
                    os.path.join(self.models_dir, "rlg_diffuser.pth"),
                    map_location=torch.device("cpu"),
                )
            )
        with torch.no_grad():
            return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0]))

    def synthesize(self, text, config, speaker_id="random", voice_dirs=None, **kwargs):
        """Synthesize speech with the given input text.

        Args:
            text (str): Input text.
            config (TortoiseConfig): Config with inference parameters.
            speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker.
            voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None.
            **kwargs: Inference settings. See `inference()`.

        Returns:
            A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference,
            `text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents`
            as latents used at inference.

        """

        speaker_id = "random" if speaker_id is None else speaker_id

        if voice_dirs is not None:
            voice_dirs = [voice_dirs]
            voice_samples, conditioning_latents = load_voice(speaker_id, voice_dirs)

        else:
            voice_samples, conditioning_latents = load_voice(speaker_id)

        outputs = self.inference_with_config(
            text, config, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **kwargs
        )

        return_dict = {
            "wav": outputs["wav"],
            "deterministic_seed": outputs["deterministic_seed"],
            "text_inputs": outputs["text"],
            "voice_samples": outputs["voice_samples"],
            "conditioning_latents": outputs["conditioning_latents"],
        }

        return return_dict

    def inference_with_config(self, text, config, **kwargs):
        """
        inference with config
        #TODO describe in detail
        """
        # Use generally found best tuning knobs for generation.
        settings = {
            "temperature": config.temperature,
            "length_penalty": config.length_penalty,
            "repetition_penalty": config.repetition_penalty,
            "top_p": config.top_p,
            "cond_free_k": config.cond_free_k,
            "diffusion_temperature": config.diffusion_temperature,
            "sampler": config.sampler,
        }
        # Presets are defined here.
        presets = {
            "single_sample": {
                "num_autoregressive_samples": 8,
                "diffusion_iterations": 10,
                "sampler": "ddim",
            },
            "ultra_fast": {
                "num_autoregressive_samples": 16,
                "diffusion_iterations": 10,
                "sampler": "ddim",
            },
            "ultra_fast_old": {
                "num_autoregressive_samples": 16,
                "diffusion_iterations": 30,
                "cond_free": False,
            },
            "very_fast": {
                "num_autoregressive_samples": 32,
                "diffusion_iterations": 30,
                "sampler": "dpm++2m",
            },
            "fast": {
                "num_autoregressive_samples": 5,
                "diffusion_iterations": 50,
                "sampler": "ddim",
            },
            "fast_old": {"num_autoregressive_samples": 96, "diffusion_iterations": 80},
            "standard": {
                "num_autoregressive_samples": 5,
                "diffusion_iterations": 200,
            },
            "high_quality": {
                "num_autoregressive_samples": 256,
                "diffusion_iterations": 400,
            },
        }
        if "preset" in kwargs:
            settings.update(presets[kwargs["preset"]])
            kwargs.pop("preset")
        settings.update(kwargs)  # allow overriding of preset settings with kwargs
        return self.inference(text, **settings)

    def inference(
        self,
        text,
        voice_samples=None,
        conditioning_latents=None,
        k=1,
        verbose=True,
        use_deterministic_seed=None,
        return_deterministic_state=False,
        latent_averaging_mode=0,
        # autoregressive generation parameters follow
        num_autoregressive_samples=16,
        temperature=0.8,
        length_penalty=1,
        repetition_penalty=2.0,
        top_p=0.8,
        max_mel_tokens=500,
        # diffusion generation parameters follow
        diffusion_iterations=100,
        cond_free=True,
        cond_free_k=2,
        diffusion_temperature=1.0,
        sampler="ddim",
        half=True,
        original_tortoise=False,
        **hf_generate_kwargs,
    ):
        """
        This function produces an audio clip of the given text being spoken with the given reference voice.

        Args:
            text: (str) Text to be spoken.
            voice_samples: (List[Tuple[torch.Tensor]]) List of an arbitrary number of reference clips, which should be tuple-pairs
                of torch tensors containing arbitrary kHz waveform data.
            conditioning_latents: (Tuple[autoregressive_conditioning_latent, diffusion_conditioning_latent]) A tuple of
                (autoregressive_conditioning_latent, diffusion_conditioning_latent), which can be provided in lieu
                of voice_samples. This is ignored unless `voice_samples=None`. Conditioning latents can be retrieved
                via `get_conditioning_latents()`.
            k: (int) The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
                latent_averaging_mode: (int) 0/1/2 for following modes:
                0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples
                1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks
                2 - latents will be generated using (almost) entire voice samples, averaged per voice sample
            verbose: (bool) Whether or not to print log messages indicating the progress of creating a clip. Default=true.
            num_autoregressive_samples: (int) Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
                As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
            temperature: (float) The softmax temperature of the autoregressive model.
            length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
            repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce
                the incidence of long silences or "uhhhhhhs", etc.
            top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
            max_mel_tokens: (int) Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
            typical_sampling: (bool) Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
                I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but could use some tuning.
            typical_mass: (float) The typical_mass parameter from the typical_sampling algorithm.
            diffusion_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively
                refine the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, however.
            cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
                each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output of the two
                is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and dramatically improves realism.
            cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
                As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
            diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
                                      are the "mean" prediction of the diffusion network and will sound bland and smeared.
            hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive transformer.
                                    Extra keyword args fed to this function get forwarded directly to that API. Documentation
                                    here: https://huggingface.co/docs/transformers/internal/generation_utils

        Returns:
            Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
            Sample rate is 24kHz.
        """
        deterministic_seed = deterministic_state(seed=use_deterministic_seed)

        text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
        text_tokens = F.pad(text_tokens, (0, 1))  # This may not be necessary.
        assert (
            text_tokens.shape[-1] < 400
        ), "Too much text provided. Break the text up into separate segments and re-try inference."

        if voice_samples is not None:
            (
                auto_conditioning,
                diffusion_conditioning,
                _,
                _,
            ) = self.get_conditioning_latents(
                voice_samples,
                return_mels=True,
                latent_averaging_mode=latent_averaging_mode,
                original_tortoise=original_tortoise,
            )
        elif conditioning_latents is not None:
            auto_conditioning, diffusion_conditioning = conditioning_latents
        else:
            (
                auto_conditioning,
                diffusion_conditioning,
            ) = self.get_random_conditioning_latents()
        auto_conditioning = auto_conditioning.to(self.device)
        diffusion_conditioning = diffusion_conditioning.to(self.device)

        diffuser = load_discrete_vocoder_diffuser(
            desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k, sampler=sampler
        )

        # in the case of single_sample,
        orig_batch_size = self.autoregressive_batch_size
        while num_autoregressive_samples % self.autoregressive_batch_size:
            self.autoregressive_batch_size //= 2
        with torch.no_grad():
            samples = []
            num_batches = num_autoregressive_samples // self.autoregressive_batch_size
            stop_mel_token = self.autoregressive.stop_mel_token
            calm_token = (
                83  # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
            )
            self.autoregressive = self.autoregressive.to(self.device)
            if verbose:
                print("Generating autoregressive samples..")
            with self.temporary_cuda(self.autoregressive) as autoregressive, torch.autocast(
                device_type="cuda", dtype=torch.float16, enabled=half
            ):
                for b in tqdm(range(num_batches), disable=not verbose):
                    codes = autoregressive.inference_speech(
                        auto_conditioning,
                        text_tokens,
                        do_sample=True,
                        top_p=top_p,
                        temperature=temperature,
                        num_return_sequences=self.autoregressive_batch_size,
                        length_penalty=length_penalty,
                        repetition_penalty=repetition_penalty,
                        max_generate_length=max_mel_tokens,
                        **hf_generate_kwargs,
                    )
                    padding_needed = max_mel_tokens - codes.shape[1]
                    codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
                    samples.append(codes)
            self.autoregressive_batch_size = orig_batch_size  # in the case of single_sample

            clip_results = []
            with self.temporary_cuda(self.clvp) as clvp, torch.autocast(
                device_type="cuda", dtype=torch.float16, enabled=half
            ):
                for batch in tqdm(samples, disable=not verbose):
                    for i in range(batch.shape[0]):
                        batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
                    clvp_res = clvp(
                        text_tokens.repeat(batch.shape[0], 1),
                        batch,
                        return_loss=False,
                    )
                    clip_results.append(clvp_res)

                clip_results = torch.cat(clip_results, dim=0)
                samples = torch.cat(samples, dim=0)
                best_results = samples[torch.topk(clip_results, k=k).indices]
            del samples

            # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
            # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
            # results, but will increase memory usage.
            with self.temporary_cuda(self.autoregressive) as autoregressive:
                best_latents = autoregressive(
                    auto_conditioning.repeat(k, 1),
                    text_tokens.repeat(k, 1),
                    torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
                    best_results,
                    torch.tensor(
                        [best_results.shape[-1] * self.autoregressive.mel_length_compression],
                        device=text_tokens.device,
                    ),
                    return_latent=True,
                    clip_inputs=False,
                )
            del auto_conditioning

            if verbose:
                print("Transforming autoregressive outputs into audio..")
            wav_candidates = []
            for b in range(best_results.shape[0]):
                codes = best_results[b].unsqueeze(0)
                latents = best_latents[b].unsqueeze(0)

                # Find the first occurrence of the "calm" token and trim the codes to that.
                ctokens = 0
                for code in range(codes.shape[-1]):
                    if codes[0, code] == calm_token:
                        ctokens += 1
                    else:
                        ctokens = 0
                    if ctokens > 8:  # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
                        latents = latents[:, :code]
                        break
                with self.temporary_cuda(self.diffusion) as diffusion:
                    mel = do_spectrogram_diffusion(
                        diffusion,
                        diffuser,
                        latents,
                        diffusion_conditioning,
                        temperature=diffusion_temperature,
                        verbose=verbose,
                    )
                with self.temporary_cuda(self.vocoder) as vocoder:
                    wav = vocoder.inference(mel)
                    wav_candidates.append(wav.cpu())

            def potentially_redact(clip, text):
                if self.enable_redaction:
                    return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1)
                return clip

            wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates]

            if len(wav_candidates) > 1:
                res = wav_candidates
            else:
                res = wav_candidates[0]

        return_dict = {
            "wav": res,
            "deterministic_seed": None,
            "text": None,
            "voice_samples": None,
            "conditioning_latents": None,
        }
        if return_deterministic_state:
            return_dict = {
                "wav": res,
                "deterministic_seed": deterministic_seed,
                "text": text,
                "voice_samples": voice_samples,
                "conditioning_latents": conditioning_latents,
            }
        return return_dict

    def forward(self):
        raise NotImplementedError("Tortoise Training is not implemented")

    def eval_step(self):
        raise NotImplementedError("Tortoise Training is not implemented")

    @staticmethod
    def init_from_config(config: "TortoiseConfig", **kwargs):  # pylint: disable=unused-argument
        return Tortoise(config)

    def load_checkpoint(
        self,
        config,
        checkpoint_dir,
        ar_checkpoint_path=None,
        diff_checkpoint_path=None,
        clvp_checkpoint_path=None,
        vocoder_checkpoint_path=None,
        eval=False,
        strict=True,
        **kwargs,
    ):  # pylint: disable=unused-argument, redefined-builtin
        """Load a model checkpoints from a directory. This model is with multiple checkpoint files and it
        expects to have all the files to be under the given `checkpoint_dir` with the rigth names.
        If eval is True, set the model to eval mode.

        Args:
            config (TortoiseConfig): The model config.
            checkpoint_dir (str): The directory where the checkpoints are stored.
            ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None.
            diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None.
            clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None.
            vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None.
            eval (bool, optional): Whether to set the model to eval mode. Defaults to False.
            strict (bool, optional): Whether to load the model strictly. Defaults to True.
        """
        if self.models_dir is None:
            self.models_dir = checkpoint_dir
        ar_path = ar_checkpoint_path or os.path.join(checkpoint_dir, "autoregressive.pth")
        diff_path = diff_checkpoint_path or os.path.join(checkpoint_dir, "diffusion_decoder.pth")
        clvp_path = clvp_checkpoint_path or os.path.join(checkpoint_dir, "clvp2.pth")
        vocoder_checkpoint_path = vocoder_checkpoint_path or os.path.join(checkpoint_dir, "vocoder.pth")
        self.mel_norm_path = os.path.join(checkpoint_dir, "mel_norms.pth")

        if os.path.exists(ar_path):
            # remove keys from the checkpoint that are not in the model
            checkpoint = torch.load(ar_path, map_location=torch.device("cpu"))

            # strict set False
            # due to removed `bias` and `masked_bias` changes in Transformers
            self.autoregressive.load_state_dict(checkpoint, strict=False)

        if os.path.exists(diff_path):
            self.diffusion.load_state_dict(torch.load(diff_path), strict=strict)

        if os.path.exists(clvp_path):
            self.clvp.load_state_dict(torch.load(clvp_path), strict=strict)

        if os.path.exists(vocoder_checkpoint_path):
            self.vocoder.load_state_dict(
                config.model_args.vocoder.value.optionally_index(
                    torch.load(
                        vocoder_checkpoint_path,
                        map_location=torch.device("cpu"),
                    )
                )
            )

        if eval:
            self.autoregressive.post_init_gpt2_config(self.args.kv_cache)
            self.autoregressive.eval()
            self.diffusion.eval()
            self.clvp.eval()
            self.vocoder.eval()

    def train_step(self):
        raise NotImplementedError("Tortoise Training is not implemented")