File size: 5,430 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import contextlib
import functools
import hashlib
import logging
import os

import requests
import torch
import tqdm

from TTS.tts.layers.bark.model import GPT, GPTConfig
from TTS.tts.layers.bark.model_fine import FineGPT, FineGPTConfig

if (
    torch.cuda.is_available()
    and hasattr(torch.cuda, "amp")
    and hasattr(torch.cuda.amp, "autocast")
    and torch.cuda.is_bf16_supported()
):
    autocast = functools.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:

    @contextlib.contextmanager
    def autocast():
        yield


# hold models in global scope to lazy load

logger = logging.getLogger(__name__)


if not hasattr(torch.nn.functional, "scaled_dot_product_attention"):
    logger.warning(
        "torch version does not support flash attention. You will get significantly faster"
        + " inference speed by upgrade torch to newest version / nightly."
    )


def _md5(fname):
    hash_md5 = hashlib.md5()
    with open(fname, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()


def _download(from_s3_path, to_local_path, CACHE_DIR):
    os.makedirs(CACHE_DIR, exist_ok=True)
    response = requests.get(from_s3_path, stream=True)
    total_size_in_bytes = int(response.headers.get("content-length", 0))
    block_size = 1024  # 1 Kibibyte
    progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(to_local_path, "wb") as file:
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
    if total_size_in_bytes not in [0, progress_bar.n]:
        raise ValueError("ERROR, something went wrong")


class InferenceContext:
    def __init__(self, benchmark=False):
        # we can't expect inputs to be the same length, so disable benchmarking by default
        self._chosen_cudnn_benchmark = benchmark
        self._cudnn_benchmark = None

    def __enter__(self):
        self._cudnn_benchmark = torch.backends.cudnn.benchmark
        torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark

    def __exit__(self, exc_type, exc_value, exc_traceback):
        torch.backends.cudnn.benchmark = self._cudnn_benchmark


if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True


@contextlib.contextmanager
def inference_mode():
    with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
        yield


def clear_cuda_cache():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()


def load_model(ckpt_path, device, config, model_type="text"):
    logger.info(f"loading {model_type} model from {ckpt_path}...")

    if device == "cpu":
        logger.warning("No GPU being used. Careful, Inference might be extremely slow!")
    if model_type == "text":
        ConfigClass = GPTConfig
        ModelClass = GPT
    elif model_type == "coarse":
        ConfigClass = GPTConfig
        ModelClass = GPT
    elif model_type == "fine":
        ConfigClass = FineGPTConfig
        ModelClass = FineGPT
    else:
        raise NotImplementedError()
    if (
        not config.USE_SMALLER_MODELS
        and os.path.exists(ckpt_path)
        and _md5(ckpt_path) != config.REMOTE_MODEL_PATHS[model_type]["checksum"]
    ):
        logger.warning(f"found outdated {model_type} model, removing...")
        os.remove(ckpt_path)
    if not os.path.exists(ckpt_path):
        logger.info(f"{model_type} model not found, downloading...")
        _download(config.REMOTE_MODEL_PATHS[model_type]["path"], ckpt_path, config.CACHE_DIR)

    checkpoint = torch.load(ckpt_path, map_location=device)
    # this is a hack
    model_args = checkpoint["model_args"]
    if "input_vocab_size" not in model_args:
        model_args["input_vocab_size"] = model_args["vocab_size"]
        model_args["output_vocab_size"] = model_args["vocab_size"]
        del model_args["vocab_size"]

    gptconf = ConfigClass(**checkpoint["model_args"])
    if model_type == "text":
        config.semantic_config = gptconf
    elif model_type == "coarse":
        config.coarse_config = gptconf
    elif model_type == "fine":
        config.fine_config = gptconf

    model = ModelClass(gptconf)
    state_dict = checkpoint["model"]
    # fixup checkpoint
    unwanted_prefix = "_orig_mod."
    for k, _ in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
    extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
    extra_keys = set(k for k in extra_keys if not k.endswith(".attn.bias"))
    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
    missing_keys = set(k for k in missing_keys if not k.endswith(".attn.bias"))
    if len(extra_keys) != 0:
        raise ValueError(f"extra keys found: {extra_keys}")
    if len(missing_keys) != 0:
        raise ValueError(f"missing keys: {missing_keys}")
    model.load_state_dict(state_dict, strict=False)
    n_params = model.get_num_params()
    val_loss = checkpoint["best_val_loss"].item()
    logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
    model.eval()
    model.to(device)
    del checkpoint, state_dict
    clear_cuda_cache()
    return model, config