Spaces:
Sleeping
Sleeping
File size: 22,336 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import os
import time
from typing import List
import numpy as np
import pysbd
import torch
from torch import nn
from TTS.config import load_config
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.models import setup_model as setup_tts_model
from TTS.tts.models.vits import Vits
# pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import synthesis, transfer_voice, trim_silence
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.numpy_transforms import save_wav
from TTS.vc.models import setup_model as setup_vc_model
from TTS.vocoder.models import setup_model as setup_vocoder_model
from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input
class Synthesizer(nn.Module):
def __init__(
self,
tts_checkpoint: str = "",
tts_config_path: str = "",
tts_speakers_file: str = "",
tts_languages_file: str = "",
vocoder_checkpoint: str = "",
vocoder_config: str = "",
encoder_checkpoint: str = "",
encoder_config: str = "",
vc_checkpoint: str = "",
vc_config: str = "",
model_dir: str = "",
voice_dir: str = None,
use_cuda: bool = False,
) -> None:
"""General 🐸 TTS interface for inference. It takes a tts and a vocoder
model and synthesize speech from the provided text.
The text is divided into a list of sentences using `pysbd` and synthesize
speech on each sentence separately.
If you have certain special characters in your text, you need to handle
them before providing the text to Synthesizer.
TODO: set the segmenter based on the source language
Args:
tts_checkpoint (str, optional): path to the tts model file.
tts_config_path (str, optional): path to the tts config file.
vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`,
encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`,
vc_checkpoint (str, optional): path to the voice conversion model file. Defaults to `""`,
vc_config (str, optional): path to the voice conversion config file. Defaults to `""`,
use_cuda (bool, optional): enable/disable cuda. Defaults to False.
"""
super().__init__()
self.tts_checkpoint = tts_checkpoint
self.tts_config_path = tts_config_path
self.tts_speakers_file = tts_speakers_file
self.tts_languages_file = tts_languages_file
self.vocoder_checkpoint = vocoder_checkpoint
self.vocoder_config = vocoder_config
self.encoder_checkpoint = encoder_checkpoint
self.encoder_config = encoder_config
self.vc_checkpoint = vc_checkpoint
self.vc_config = vc_config
self.use_cuda = use_cuda
self.tts_model = None
self.vocoder_model = None
self.vc_model = None
self.speaker_manager = None
self.tts_speakers = {}
self.language_manager = None
self.num_languages = 0
self.tts_languages = {}
self.d_vector_dim = 0
self.seg = self._get_segmenter("en")
self.use_cuda = use_cuda
self.voice_dir = voice_dir
if self.use_cuda:
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
if tts_checkpoint:
self._load_tts(tts_checkpoint, tts_config_path, use_cuda)
self.output_sample_rate = self.tts_config.audio["sample_rate"]
if vocoder_checkpoint:
self._load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda)
self.output_sample_rate = self.vocoder_config.audio["sample_rate"]
if vc_checkpoint:
self._load_vc(vc_checkpoint, vc_config, use_cuda)
self.output_sample_rate = self.vc_config.audio["output_sample_rate"]
if model_dir:
if "fairseq" in model_dir:
self._load_fairseq_from_dir(model_dir, use_cuda)
self.output_sample_rate = self.tts_config.audio["sample_rate"]
else:
self._load_tts_from_dir(model_dir, use_cuda)
self.output_sample_rate = self.tts_config.audio["output_sample_rate"]
@staticmethod
def _get_segmenter(lang: str):
"""get the sentence segmenter for the given language.
Args:
lang (str): target language code.
Returns:
[type]: [description]
"""
return pysbd.Segmenter(language=lang, clean=True)
def _load_vc(self, vc_checkpoint: str, vc_config_path: str, use_cuda: bool) -> None:
"""Load the voice conversion model.
1. Load the model config.
2. Init the model from the config.
3. Load the model weights.
4. Move the model to the GPU if CUDA is enabled.
Args:
vc_checkpoint (str): path to the model checkpoint.
tts_config_path (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
# pylint: disable=global-statement
self.vc_config = load_config(vc_config_path)
self.vc_model = setup_vc_model(config=self.vc_config)
self.vc_model.load_checkpoint(self.vc_config, vc_checkpoint)
if use_cuda:
self.vc_model.cuda()
def _load_fairseq_from_dir(self, model_dir: str, use_cuda: bool) -> None:
"""Load the fairseq model from a directory.
We assume it is VITS and the model knows how to load itself from the directory and there is a config.json file in the directory.
"""
self.tts_config = VitsConfig()
self.tts_model = Vits.init_from_config(self.tts_config)
self.tts_model.load_fairseq_checkpoint(self.tts_config, checkpoint_dir=model_dir, eval=True)
self.tts_config = self.tts_model.config
if use_cuda:
self.tts_model.cuda()
def _load_tts_from_dir(self, model_dir: str, use_cuda: bool) -> None:
"""Load the TTS model from a directory.
We assume the model knows how to load itself from the directory and there is a config.json file in the directory.
"""
config = load_config(os.path.join(model_dir, "config.json"))
self.tts_config = config
self.tts_model = setup_tts_model(config)
self.tts_model.load_checkpoint(config, checkpoint_dir=model_dir, eval=True)
if use_cuda:
self.tts_model.cuda()
def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None:
"""Load the TTS model.
1. Load the model config.
2. Init the model from the config.
3. Load the model weights.
4. Move the model to the GPU if CUDA is enabled.
5. Init the speaker manager in the model.
Args:
tts_checkpoint (str): path to the model checkpoint.
tts_config_path (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
# pylint: disable=global-statement
self.tts_config = load_config(tts_config_path)
if self.tts_config["use_phonemes"] and self.tts_config["phonemizer"] is None:
raise ValueError("Phonemizer is not defined in the TTS config.")
self.tts_model = setup_tts_model(config=self.tts_config)
if not self.encoder_checkpoint:
self._set_speaker_encoder_paths_from_tts_config()
self.tts_model.load_checkpoint(self.tts_config, tts_checkpoint, eval=True)
if use_cuda:
self.tts_model.cuda()
if self.encoder_checkpoint and hasattr(self.tts_model, "speaker_manager"):
self.tts_model.speaker_manager.init_encoder(self.encoder_checkpoint, self.encoder_config, use_cuda)
def _set_speaker_encoder_paths_from_tts_config(self):
"""Set the encoder paths from the tts model config for models with speaker encoders."""
if hasattr(self.tts_config, "model_args") and hasattr(
self.tts_config.model_args, "speaker_encoder_config_path"
):
self.encoder_checkpoint = self.tts_config.model_args.speaker_encoder_model_path
self.encoder_config = self.tts_config.model_args.speaker_encoder_config_path
def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None:
"""Load the vocoder model.
1. Load the vocoder config.
2. Init the AudioProcessor for the vocoder.
3. Init the vocoder model from the config.
4. Move the model to the GPU if CUDA is enabled.
Args:
model_file (str): path to the model checkpoint.
model_config (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
self.vocoder_config = load_config(model_config)
self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config.audio)
self.vocoder_model = setup_vocoder_model(self.vocoder_config)
self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True)
if use_cuda:
self.vocoder_model.cuda()
def split_into_sentences(self, text) -> List[str]:
"""Split give text into sentences.
Args:
text (str): input text in string format.
Returns:
List[str]: list of sentences.
"""
return self.seg.segment(text)
def save_wav(self, wav: List[int], path: str, pipe_out=None) -> None:
"""Save the waveform as a file.
Args:
wav (List[int]): waveform as a list of values.
path (str): output path to save the waveform.
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
"""
# if tensor convert to numpy
if torch.is_tensor(wav):
wav = wav.cpu().numpy()
if isinstance(wav, list):
wav = np.array(wav)
save_wav(wav=wav, path=path, sample_rate=self.output_sample_rate, pipe_out=pipe_out)
def voice_conversion(self, source_wav: str, target_wav: str) -> List[int]:
output_wav = self.vc_model.voice_conversion(source_wav, target_wav)
return output_wav
def tts(
self,
text: str = "",
speaker_name: str = "",
language_name: str = "",
speaker_wav=None,
style_wav=None,
style_text=None,
reference_wav=None,
reference_speaker_name=None,
**kwargs,
) -> List[int]:
"""🐸 TTS magic. Run all the models and generate speech.
Args:
text (str): input text.
speaker_name (str, optional): speaker id for multi-speaker models. Defaults to "".
language_name (str, optional): language id for multi-language models. Defaults to "".
speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None.
style_wav ([type], optional): style waveform for GST. Defaults to None.
style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.
reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.
reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None.
Returns:
List[int]: [description]
"""
start_time = time.time()
wavs = []
if not text and not reference_wav:
raise ValueError(
"You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API."
)
if text:
sens = self.split_into_sentences(text)
print(" > Text splitted to sentences.")
print(sens)
# handle multi-speaker
if "voice_dir" in kwargs:
self.voice_dir = kwargs["voice_dir"]
kwargs.pop("voice_dir")
speaker_embedding = None
speaker_id = None
if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
if speaker_name and isinstance(speaker_name, str):
if self.tts_config.use_d_vector_file:
# get the average speaker embedding from the saved d_vectors.
speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding(
speaker_name, num_samples=None, randomize=False
)
speaker_embedding = np.array(speaker_embedding)[None, :] # [1 x embedding_dim]
else:
# get speaker idx from the speaker name
speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name]
# handle Neon models with single speaker.
elif len(self.tts_model.speaker_manager.name_to_id) == 1:
speaker_id = list(self.tts_model.speaker_manager.name_to_id.values())[0]
elif not speaker_name and not speaker_wav:
raise ValueError(
" [!] Looks like you are using a multi-speaker model. "
"You need to define either a `speaker_idx` or a `speaker_wav` to use a multi-speaker model."
)
else:
speaker_embedding = None
else:
if speaker_name and self.voice_dir is None:
raise ValueError(
f" [!] Missing speakers.json file path for selecting speaker {speaker_name}."
"Define path for speaker.json if it is a multi-speaker model or remove defined speaker idx. "
)
# handle multi-lingual
language_id = None
if self.tts_languages_file or (
hasattr(self.tts_model, "language_manager") and self.tts_model.language_manager is not None
):
if len(self.tts_model.language_manager.name_to_id) == 1:
language_id = list(self.tts_model.language_manager.name_to_id.values())[0]
elif language_name and isinstance(language_name, str):
try:
language_id = self.tts_model.language_manager.name_to_id[language_name]
except KeyError as e:
raise ValueError(
f" [!] Looks like you use a multi-lingual model. "
f"Language {language_name} is not in the available languages: "
f"{self.tts_model.language_manager.name_to_id.keys()}."
) from e
elif not language_name:
raise ValueError(
" [!] Look like you use a multi-lingual model. "
"You need to define either a `language_name` or a `style_wav` to use a multi-lingual model."
)
else:
raise ValueError(
f" [!] Missing language_ids.json file path for selecting language {language_name}."
"Define path for language_ids.json if it is a multi-lingual model or remove defined language idx. "
)
# compute a new d_vector from the given clip.
if speaker_wav is not None and self.tts_model.speaker_manager is not None:
speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(speaker_wav)
vocoder_device = "cpu"
use_gl = self.vocoder_model is None
if not use_gl:
vocoder_device = next(self.vocoder_model.parameters()).device
if self.use_cuda:
vocoder_device = "cuda"
if not reference_wav: # not voice conversion
for sen in sens:
if hasattr(self.tts_model, "synthesize"):
outputs = self.tts_model.synthesize(
text=sen,
config=self.tts_config,
speaker_id=speaker_name,
voice_dirs=self.voice_dir,
d_vector=speaker_embedding,
speaker_wav=speaker_wav,
language=language_name,
**kwargs,
)
else:
# synthesize voice
outputs = synthesis(
model=self.tts_model,
text=sen,
CONFIG=self.tts_config,
use_cuda=self.use_cuda,
speaker_id=speaker_id,
style_wav=style_wav,
style_text=style_text,
use_griffin_lim=use_gl,
d_vector=speaker_embedding,
language_id=language_id,
)
waveform = outputs["wav"]
if not use_gl:
mel_postnet_spec = outputs["outputs"]["model_outputs"][0].detach().cpu().numpy()
# denormalize tts output based on tts audio config
mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T
# renormalize spectrogram based on vocoder config
vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
# compute scale factor for possible sample rate mismatch
scale_factor = [
1,
self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate,
]
if scale_factor[1] != 1:
print(" > interpolating tts model output.")
vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
else:
vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable
# run vocoder model
# [1, T, C]
waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device))
if torch.is_tensor(waveform) and waveform.device != torch.device("cpu") and not use_gl:
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
waveform = waveform.squeeze()
# trim silence
if "do_trim_silence" in self.tts_config.audio and self.tts_config.audio["do_trim_silence"]:
waveform = trim_silence(waveform, self.tts_model.ap)
wavs += list(waveform)
wavs += [0] * 10000
else:
# get the speaker embedding or speaker id for the reference wav file
reference_speaker_embedding = None
reference_speaker_id = None
if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
if reference_speaker_name and isinstance(reference_speaker_name, str):
if self.tts_config.use_d_vector_file:
# get the speaker embedding from the saved d_vectors.
reference_speaker_embedding = self.tts_model.speaker_manager.get_embeddings_by_name(
reference_speaker_name
)[0]
reference_speaker_embedding = np.array(reference_speaker_embedding)[
None, :
] # [1 x embedding_dim]
else:
# get speaker idx from the speaker name
reference_speaker_id = self.tts_model.speaker_manager.name_to_id[reference_speaker_name]
else:
reference_speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(
reference_wav
)
outputs = transfer_voice(
model=self.tts_model,
CONFIG=self.tts_config,
use_cuda=self.use_cuda,
reference_wav=reference_wav,
speaker_id=speaker_id,
d_vector=speaker_embedding,
use_griffin_lim=use_gl,
reference_speaker_id=reference_speaker_id,
reference_d_vector=reference_speaker_embedding,
)
waveform = outputs
if not use_gl:
mel_postnet_spec = outputs[0].detach().cpu().numpy()
# denormalize tts output based on tts audio config
mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T
# renormalize spectrogram based on vocoder config
vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
# compute scale factor for possible sample rate mismatch
scale_factor = [
1,
self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate,
]
if scale_factor[1] != 1:
print(" > interpolating tts model output.")
vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
else:
vocoder_input = torch.tensor(vocoder_input).unsqueeze(0) # pylint: disable=not-callable
# run vocoder model
# [1, T, C]
waveform = self.vocoder_model.inference(vocoder_input.to(vocoder_device))
if torch.is_tensor(waveform) and waveform.device != torch.device("cpu"):
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
wavs = waveform.squeeze()
# compute stats
process_time = time.time() - start_time
audio_time = len(wavs) / self.tts_config.audio["sample_rate"]
print(f" > Processing time: {process_time}")
print(f" > Real-time factor: {process_time / audio_time}")
return wavs
|