File size: 1,079 Bytes
a0d83ee
b0fecb0
a0d83ee
 
 
d5b1b48
a0d83ee
 
 
 
 
 
 
 
90005cb
a0d83ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import datasets
import transformers
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import torch

dataset = datasets.load_dataset('beans')

extractor = AutoFeatureExtractor.from_pretrained("lucasdmpp/BeanLeaf")
model = AutoModelForImageClassification.from_pretrained("lucasdmpp/BeanLeaf")

labels = dataset['train'].features['labels'].names
example_imgs = ["example_0.jpg", "example_1.jpg"]

def classify(im):
  features = extractor(im, return_tensors='pt')
  logits = model(features["pixel_values"])[-1]
  probability = torch.nn.functional.softmax(logits, dim=-1)
  probs = probability[0].detach().numpy()
  confidences = {label: float(probs[i]) for i, label in enumerate(labels)} 
  return confidences
  
import gradio as gr

interface = interface = gr.Interface(classify, inputs='image',
                          outputs='label',
                          title='Bean Classification', 
                          description='Check the health of your bean leaves',
                          examples = example_imgs)

interface.launch(debug=True)