Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,375 Bytes
bcc039b 1da3dd9 bcc039b 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 936d943 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b 392117b bcc039b 1da3dd9 bcc039b 1da3dd9 bcc039b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import time
import fsspec
import jsonlines
import numpy as np
import pyarrow as pa
import torch
import typer
from rich.progress import Progress, TextColumn
from bytelatent.data.file_util import get_fs
from bytelatent.data.patcher import calculate_entropies
from bytelatent.entropy_model import load_entropy_model
from bytelatent.tokenizers.build_tokenizer import TokenizerArgs
def get_id_key(doc: dict) -> int:
"""
We need a reliable way to ensure that samples from jsonl
and arrow are the same, but there is no unique id field,
so derive the best possible
"""
if "sample_id" in doc:
return "sample_id"
elif "title" in doc:
return "title"
elif "qid" in doc:
return "qid"
elif "paper_id" in doc:
return "paper_id"
elif "path" in doc:
return "path"
elif "url" in doc:
return "url"
elif "id" in doc:
return "id"
else:
raise ValueError(f"Could not find a id key from: {doc.keys()}")
def get_id_from_doc(doc: dict) -> int:
"""
We need a reliable way to ensure that samples from jsonl
and arrow are the same, but there is no unique id field,
so derive the best possible
"""
return str(doc[get_id_key(doc)])
def get_text(doc: dict):
if "text" in doc:
text = doc["text"]
elif "content" in doc:
text = doc["content"]
else:
raise ValueError(f"Could not find a text key from: {doc.keys()}")
return text
def jsonl_file_iterator(fs: fsspec.AbstractFileSystem, path: str):
with fs.open(path) as f:
reader = jsonlines.Reader(f)
yield from reader
def main(
input_file: str,
output_file: str,
patching_device: str = "cuda",
log_step: int = 10_000,
entropy_model_checkpoint_dir: str = "public_data/entropy_checkpoint",
entropy_model_state_dict_path: str = "public_data/entropy_model.pth",
bpe_tokenizer_path: str = "public_data/tokenizer.model",
dry_run: bool = False,
s3_profile: str | None = None,
):
print(f"Preprocessing entropies, input: {input_file}, output: {output_file}")
print("Loading entropy model", entropy_model_checkpoint_dir)
input_fs = get_fs(input_file, s3_profile=s3_profile)
input_doc_iterator = jsonl_file_iterator(input_fs, input_file)
if dry_run:
return
entropy_model = load_entropy_model(
entropy_model_checkpoint_dir,
entropy_model_state_dict_path,
device=patching_device,
)
print("Creating patcher")
patching_batch_size = 32
print("Creating tokenizer")
tokenizer_args = TokenizerArgs(
name="blt", init_kwargs={"bpe_tokenizer_path": bpe_tokenizer_path}
)
tokenizer = tokenizer_args.build()
step = 0
print("starting")
start_time = time.time()
patch_time = 0
entropy_field = pa.field("entropies", pa.list_(pa.float16()), nullable=False)
sample_id_field = pa.field("sample_id", pa.string(), nullable=False)
text_field = pa.field("text", pa.string(), nullable=False)
schema = pa.schema([sample_id_field, text_field, entropy_field])
arrow_batch_size = 1_000
output_fs = get_fs(output_file, s3_profile=s3_profile)
try:
with output_fs.open(output_file, "wb") as sink:
with pa.ipc.new_file(sink, schema) as writer:
id_buffer = []
entropies_buffer = []
text_buffer = []
with Progress(
*Progress.get_default_columns(),
TextColumn("Completed: {task.completed}"),
) as progress:
task = progress.add_task(
"[green]Calculating entropies...", total=None
)
for doc in input_doc_iterator:
sample_id = get_id_from_doc(doc)
text = get_text(doc)
tokens = torch.tensor(tokenizer.encode(text))
patch_start = time.time()
scores, _ = calculate_entropies(
tokens,
entropy_model,
patching_batch_size,
patching_device,
)
entropies_buffer.append(
np.array(scores.tolist(), dtype=np.float16)
)
id_buffer.append(sample_id)
text_buffer.append(text)
if len(entropies_buffer) == arrow_batch_size:
batch = pa.record_batch(
{
"entropies": entropies_buffer,
"sample_id": id_buffer,
"text": text_buffer,
},
schema,
)
writer.write(batch)
entropies_buffer = []
id_buffer = []
text_buffer = []
patch_time += time.time() - patch_start
step += 1
if step % log_step == 0:
print("Completed steps:", step)
progress.update(task, advance=1)
if len(entropies_buffer) > 0:
# Write last things
batch = pa.record_batch(
{
"entropies": entropies_buffer,
"sample_id": id_buffer,
"text": text_buffer,
},
schema,
)
writer.write(batch)
entropies_buffer = []
id_buffer = []
text_buffer = []
output_fs.touch(f"{output_file}.complete")
except:
if output_fs.exists(output_file):
output_fs.rm(output_file)
raise
elapsed = time.time() - start_time
print("steps", step)
print("done in:", elapsed)
if __name__ == "__main__":
typer.run(main)
|