File size: 63,090 Bytes
1991049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
from __future__ import annotations

import os
from tqdm import tqdm
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import LinearLR, SequentialLR

import torchaudio

from einops import rearrange

from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs

from ema_pytorch import EMA

from loguru import logger

from e2_tts_pytorch.e2_tts_crossatt6 import (
    E2TTS,
    DurationPredictor,
    MelSpec
)

import traceback
import numpy as np
from moviepy.editor import AudioFileClip, VideoFileClip

def exists(v):
    return v is not None

def default(v, d):
    return v if exists(v) else d

def to_numpy(t):
    return t.detach().cpu().numpy()

# plot spectrogram

def plot_spectrogram(spectrogram):
    spectrogram = to_numpy(spectrogram)
    fig, ax = plt.subplots(figsize=(10, 4))
    im = ax.imshow(spectrogram.T, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    plt.close()
    return fig

# collation

def collate_fn(batch):
    mel_specs = [item['mel_spec'].squeeze(0) for item in batch]
    mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs])
    max_mel_length = mel_lengths.amax()

    padded_mel_specs = []
    for spec in mel_specs:
        padding = (0, max_mel_length - spec.size(-1))
        padded_spec = F.pad(spec, padding, value = 0)
        padded_mel_specs.append(padded_spec)
    
    mel_specs = torch.stack(padded_mel_specs)

    text = [item['text'] for item in batch]
    text_lengths = torch.LongTensor([len(item) for item in text])

    return dict(
        mel = mel_specs,
        mel_lengths = mel_lengths,
        text = text,
        text_lengths = text_lengths,
    )

# dataset

class HFDataset(Dataset):
    def __init__(

        self,

        hf_dataset: Dataset,

        target_sample_rate = 24_000,

        hop_length = 256

    ):
        self.data = hf_dataset
        self.target_sample_rate = target_sample_rate
        self.hop_length = hop_length
        self.mel_spectrogram = MelSpec(sampling_rate=target_sample_rate)

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, index):
        row = self.data[index]
        audio = row['audio']['array']

        #logger.info(f"Audio shape: {audio.shape}")

        sample_rate = row['audio']['sampling_rate']
        duration = audio.shape[-1] / sample_rate

        if duration > 20 or duration < 0.3:
            logger.warning(f"Skipping due to duration out of bound: {duration}")
            return self.__getitem__((index + 1) % len(self.data))
        
        audio_tensor = torch.from_numpy(audio).float()
        
        if sample_rate != self.target_sample_rate:
            resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
            audio_tensor = resampler(audio_tensor)
        
        audio_tensor = rearrange(audio_tensor, 't -> 1 t')
        
        mel_spec = self.mel_spectrogram(audio_tensor)
        
        mel_spec = rearrange(mel_spec, '1 d t -> d t')
        
        text = row['transcript']
        
        return dict(
            mel_spec = mel_spec,
            text = text,
        )

# trainer

class E2Trainer:
    def __init__(

        self,

        model: E2TTS,

        optimizer,

        num_warmup_steps=20000,

        grad_accumulation_steps=1,

        duration_predictor: DurationPredictor | None = None,

        checkpoint_path = None,

        log_file = "logs.txt",

        max_grad_norm = 1.0,

        sample_rate = 22050,

        tensorboard_log_dir = 'runs/e2_tts_experiment',

        accelerate_kwargs: dict = dict(),

        ema_kwargs: dict = dict(),

        use_switch_ema = False,

        if_text = False,

        if_prompt = False

    ):
        logger.add(log_file)

        ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True)

        self.accelerator = Accelerator(
            log_with = "all",
            kwargs_handlers = [ddp_kwargs],
            gradient_accumulation_steps = grad_accumulation_steps,
            **accelerate_kwargs
        )
        self.accelerator.wait_for_everyone()

        self.target_sample_rate = sample_rate

        self.model = model

        self.need_velocity_consistent_loss = model.velocity_consistency_weight > 0.

        #self.ema_model = EMA(
        #    model,
        #    include_online_model = False,
        #    **ema_kwargs
        #)

        self.use_switch_ema = use_switch_ema

        self.duration_predictor = duration_predictor
        self.optimizer = optimizer
        self.num_warmup_steps = num_warmup_steps
        self.checkpoint_path = default(checkpoint_path, 'model.pth')
        self.mel_spectrogram = MelSpec(sampling_rate=self.target_sample_rate)

        self.model, self.optimizer = self.accelerator.prepare(
            self.model, self.optimizer
        )
        #self.ema_model = self.accelerator.prepare(self.ema_model)
        self.max_grad_norm = max_grad_norm
        
        self.writer = SummaryWriter(log_dir=tensorboard_log_dir)
        self.tensorboard_log_dir = tensorboard_log_dir
        self.if_text = if_text
        self.if_prompt = if_prompt
        
        self.device_id = self.accelerator.device.index
        self.num_processes = self.accelerator.num_processes

    @property
    def is_main(self):
        return self.accelerator.is_main_process

    def save_checkpoint(self, step, finetune=False):
        self.accelerator.wait_for_everyone()
        if self.is_main:
            checkpoint = dict(
                model_state_dict = self.accelerator.unwrap_model(self.model).state_dict(),
                #optimizer_state_dict = self.accelerator.unwrap_model(self.optimizer).state_dict(),
                #ema_model_state_dict = self.ema_model.state_dict(),
                #scheduler_state_dict = self.scheduler.state_dict(),
                #step = step,
            )

            self.accelerator.save(checkpoint, self.tensorboard_log_dir + "/" + str(step) + ".pt")

    def load_checkpoint(self):
        if not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path):
            return 0

        checkpoint = torch.load(self.checkpoint_path, map_location='cpu')
        for key in list(checkpoint['model_state_dict'].keys()):
            #if key.startswith('mel_spec.'):
            #    del checkpoint['model_state_dict'][key]
            if key.startswith('transformer.text_registers'):
                if checkpoint['model_state_dict'][key].shape[1] != self.accelerator.unwrap_model(self.model).transformer.text_registers.shape[1]:
                    print('miss match: transformer.text_registers', checkpoint['model_state_dict'][key].shape, self.accelerator.unwrap_model(self.model).transformer.text_registers.shape)
                    del checkpoint['model_state_dict'][key]
        self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict'], strict=False)
        #self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint['optimizer_state_dict'])

        #if self.is_main:
        #    self.ema_model.load_state_dict(checkpoint['ema_model_state_dict'])

        #if self.scheduler:
        #    self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        #return checkpoint['step']
        return 0

    def evaluate(self, eval_dataloader, epoch, epochs, global_step):
        if eval_dataloader is None:
            return

        total_val_loss, N, total_lossmore1, total_lossmore2 = 0, 0, 0, 0
        self.model.eval()
        eval_progress_bar = tqdm(eval_dataloader, desc=f"Epoch {epoch}/{epochs}", unit="step", disable=not self.accelerator.is_local_main_process)
        for step, batch in enumerate(eval_dataloader):
            with self.accelerator.accumulate(self.model) and torch.no_grad():
                text, mel_spec, video_paths, mel_lengths, video_drop_prompt, audio_drop_prompt = batch

                val_loss, cond, pred, pred_data, lossmore = self.model(
                    mel_spec,
                    text=(text if self.if_text else None),
                    times=0.5,
                    lens=mel_lengths,
                    velocity_consistency_model=None,
                    prompt=(text if self.if_prompt else None),
                    video_drop_prompt=video_drop_prompt,
                    audio_drop_prompt=audio_drop_prompt,
                    val=True,
                    video_paths=video_paths
                )
                a = torch.tensor(val_loss.item()*len(text), dtype=torch.float32).reshape(1).to(val_loss.device)
                b = torch.tensor(len(text), dtype=torch.int32).reshape(1).to(val_loss.device)
                c = torch.tensor(lossmore[0].item()*len(text), dtype=torch.float32).reshape(1).to(lossmore[0].device)
                d = torch.tensor(lossmore[1].item()*len(text), dtype=torch.float32).reshape(1).to(lossmore[1].device)
                val_loss_gather, N_gather, lossmore_gather1, lossmore_gather2 = self.accelerator.gather_for_metrics((a, b, c, d))
                for i in range(val_loss_gather.shape[0]):
                    total_val_loss += val_loss_gather[i].item()
                    N += N_gather[i].item()
                    total_lossmore1 += lossmore_gather1[i].item()
                    total_lossmore2 += lossmore_gather2[i].item()
                eval_progress_bar.update(1)

        if self.accelerator.is_local_main_process:
            total_val_loss = round(total_val_loss/float(N), 4)
            total_lossmore1 = round(total_lossmore1/float(N), 4)
            total_lossmore2 = round(total_lossmore2/float(N), 4)
            result_string = "Epoch: {}, GlobalStep: {}, ValLoss: {}, N: {}, Lossmore1: {}, Lossmore2: {} (average loss)\n".format(epoch, global_step, total_val_loss, N, total_lossmore1, total_lossmore2)
            logger.info(result_string)

        torch.cuda.empty_cache()

    def train(self, datasets, epochs, batch_size, num_workers=12, save_step=1000):

        params_d = {}
        trainable_d = {}
        for n, p in self.model.named_parameters():
            key = ".".join(n.split(".")[:2])
            if key not in params_d:
                params_d[key] = 0
                trainable_d[key] = p.requires_grad
            params_d[key] += p.numel()
            assert(trainable_d[key] == p.requires_grad)
        print(params_d)
        print(trainable_d)
        num_trainable_parameters = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
        print("Num trainable parameters: {}".format(num_trainable_parameters))

        train_dataset = datasets[0]
        eval_datasets = datasets[1:]
        #train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate_fn, shuffle=True, num_workers=num_workers, pin_memory=True)
        train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size*train_dataset.multi, collate_fn=train_dataset.collate_fn, num_workers=num_workers, drop_last=True, pin_memory=True)
        eval_dataloaders = [DataLoader(eval_dataset, shuffle=False, batch_size=16, collate_fn=eval_dataset.collate_fn, num_workers=num_workers, drop_last=False, pin_memory=True) if eval_dataset is not None else None for eval_dataset in eval_datasets]
        
        total_steps = len(train_dataloader) * epochs
        decay_steps = total_steps - self.num_warmup_steps
        warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=self.num_warmup_steps)
        decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
        self.scheduler = SequentialLR(self.optimizer, 
                                      schedulers=[warmup_scheduler, decay_scheduler],
                                      milestones=[self.num_warmup_steps])
        train_dataloader, self.scheduler = self.accelerator.prepare(train_dataloader, self.scheduler)
        eval_dataloaders = [self.accelerator.prepare(eval_dataloader) for eval_dataloader in eval_dataloaders if eval_dataloader is not None]
        start_step = self.load_checkpoint()
        global_step = start_step

        for epoch in range(epochs):

            if epoch == 0:
                [self.evaluate(eval_dataloader, 1, epochs, 0) for eval_dataloader in eval_dataloaders]

            self.model.train()
            progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{epochs}", unit="step", disable=not self.accelerator.is_local_main_process)
            epoch_loss = 0.0

            for batch in progress_bar:
                with self.accelerator.accumulate(self.model):
                    #text_inputs = batch['text']
                    #mel_spec = rearrange(batch['mel'], 'b d n -> b n d')
                    #mel_lengths = batch["mel_lengths"]
                    text, mel_spec, video_paths, mel_lengths, video_drop_prompt, audio_drop_prompt = batch
                    #print("batchsize", len(text))
                    #print("batch", text, mel_spec.shape, video_paths, mel_lengths)

                    if exists(self.duration_predictor):
                        dur_loss = self.duration_predictor(mel_spec, lens=batch.get('durations'))
                        self.writer.add_scalar('duration loss', dur_loss.detach().cpu().item(), global_step)

                    velocity_consistency_model = None
                    #if self.need_velocity_consistent_loss and self.ema_model.initted:
                    #    velocity_consistency_model = self.accelerator.unwrap_model(self.ema_model).ema_model

                    loss, cond, pred, pred_data, lossmore = self.model(
                        mel_spec,
                        text=(text if self.if_text else None),
                        lens=mel_lengths,
                        velocity_consistency_model=velocity_consistency_model,
                        prompt=(text if self.if_prompt else None),
                        video_drop_prompt=video_drop_prompt,
                        audio_drop_prompt=audio_drop_prompt,
                        video_paths=video_paths
                    )

                    self.accelerator.backward(loss)

                    if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
                        self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)

                    self.optimizer.step()
                    self.scheduler.step()
                    self.optimizer.zero_grad()

                #self.accelerator.unwrap_model(self.ema_model).update()

                if self.accelerator.is_local_main_process:
                    logger.info(f"step {global_step+1}: loss = {loss.detach().cpu().item():.4f}")
                    self.writer.add_scalar('loss', loss.detach().cpu().item(), global_step)
                    self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_step)
                
                global_step += 1
                epoch_loss += loss.detach().cpu().item()
                progress_bar.set_postfix(loss=loss.detach().cpu().item())
                
                if global_step % save_step == 0:
                    self.save_checkpoint(global_step)
                    self.writer.add_figure("mel/target", plot_spectrogram(mel_spec[0,:,:]), global_step)
                    self.writer.add_figure("mel/mask", plot_spectrogram(cond[0,:,:]), global_step)
                    self.writer.add_figure("mel/prediction", plot_spectrogram(pred_data[0,:,:]), global_step)
                    [self.evaluate(eval_dataloader, epoch+1, epochs, global_step) for eval_dataloader in eval_dataloaders]
                
                #if global_step % 10 == 0:
                #    torch.cuda.empty_cache()
            
            epoch_loss /= len(train_dataloader)
            if self.accelerator.is_local_main_process:
                logger.info(f"epoch {epoch+1}/{epochs} - average loss = {epoch_loss:.4f}")
                self.writer.add_scalar('epoch average loss', epoch_loss, epoch)

        #if self.use_switch_ema:
        #    self.ema_model.update_model_with_ema()

        self.writer.close()


import json
import random
import pandas as pd
from e2_tts_pytorch import torch_tools

DURATION = torch_tools.total_length
#DURATION = 3000
#beta = 1.5960
#theta = 0.3259
cand = 99999999

class Text2AudioDataset(Dataset):
    def __init__(self, dataset, part, prefix, text_column, audio_column, num_examples=-1, samples=-1, stft=None, augment=-1, main_process=True, SCORE_THRESHOLD_TRAIN="", train_file="", theta=0.0, vggsound=0, video_drop_prompt=None, audio_drop_prompt=None, device_id=0, vgg_test=None, video_encoder="clip_vit", val_length=None, num_processes=8):

        #inputs = list(dataset[text_column])
        #self.inputs = [prefix + inp for inp in inputs]
        #self.audios = list(dataset[audio_column])
        #self.indices = list(range(len(self.inputs)))
        #
        #print("audios", len(self.audios))
        #self.new_audios = []
        #for index, audio in enumerate(self.audios):
        #    utt, fmt = audio.split(".")
        #    new_audio = "/zhanghaomin/datas/audioset_sl/mnt/fast/nobackup/scratch4weeks/xm00178/WavCaps/data/waveforms/AudioSet_SL_flac/" + utt + ".flac"
        #    #if os.path.exists(new_audio):
        #    self.new_audios.append(new_audio)
        #self.audios = self.new_audios
        #N = len(self.audios)
        #print("audios", len(self.new_audios))
        
        
        test_final = "/ailab-train/speech/zhanghaomin/scps/tango-master/data/test_audiocaps_subset.json"
        test_utts = {}
        with open(test_final, "r") as fr:
            for line in fr.readlines():
                wav = json.loads(line.strip())["location"]
                utt = wav.rsplit("/", 1)[-1].rsplit("_", 1)[0]
                utt = "Y"+utt
                assert(utt not in test_utts)
                test_utts[utt] = 1
        main_process and print("test_final", len(test_utts))
        
        bbc_soundeffects_utts = {}
        freesound_utts = {}
        
        audioset_filter_labels = {"Music": 0, "Speech": 0, "Vehicle": 0, "Musical instrument": 0}
        
        
        self.inputs = []
        self.audios = []
        self.indices = []
        N = 0
        
        
        audiocaps = True
        if SCORE_THRESHOLD_TRAIN["/zhanghaomin/datas/audiocaps"] >= 9000.0:
            audiocaps = False
        
        audioset_sl = True
        bbc_soundeffects = True
        freesound = True
        soundbible = True
        if SCORE_THRESHOLD_TRAIN["/radiostorage/WavCaps"] >= 9000.0:
            audioset_sl = False
            bbc_soundeffects = False
            freesound = False
            soundbible = False
        
        soundeffects = True
        if SCORE_THRESHOLD_TRAIN["/radiostorage/AudioGroup"] >= 9000.0:
            soundeffects = False
        self.soundeffects = soundeffects
        
        audioset = True
        if SCORE_THRESHOLD_TRAIN["/ckptstorage/zhanghaomin/audioset"] >= 9000.0:
            audioset = False
        
        bbc_soundeffects2 = True
        if SCORE_THRESHOLD_TRAIN["/ckptstorage/zhanghaomin/BBCSoundEffects"] >= 9000.0:
            bbc_soundeffects2 = False
        
        freesound2 = True
        if SCORE_THRESHOLD_TRAIN["/ckptstorage/zhanghaomin/CLAP_freesound"] >= 9000.0:
            freesound2 = False
        
        musiccaps = True
        if SCORE_THRESHOLD_TRAIN["/zhanghaomin/datas/musiccap"] >= 9000.0:
            musiccaps = False
        
        tangopromptbank = True
        if SCORE_THRESHOLD_TRAIN["/ckptstorage/zhanghaomin/TangoPromptBank"] >= 9000.0:
            tangopromptbank = False
        
        audioset_sl_2ch = True
        if SCORE_THRESHOLD_TRAIN["/ckptstorage/zhanghaomin/audiosetsl"] >= 9000.0:
            audioset_sl_2ch = False
        self.audioset_sl_2ch = audioset_sl_2ch
        
        boom_epic = True
        if SCORE_THRESHOLD_TRAIN["/ckptstorage/zhanghaomin/giantsoundeffects"] >= 9000.0:
            boom_epic = False
        self.boom_epic = boom_epic
        
        if isinstance(part, list):
            part, scp_ac, start_ac, end_ac = part
            assert(part == "val_audiocaps")
        else:
            scp_ac = None
        
        if (audioset_sl and part in ["train", "train_val_audioset_sl"]) or (part == "val_audioset_sl"):
            self.audioset_sl_inputs = []
            self.audioset_sl_audios = []
            self.audioset_sl_indices = []
            audioset_sl_path_train = "/zhanghaomin/codes2/tango-master/data/train_audioset_sl.json"
            audioset_sl_path_val = "/zhanghaomin/codes2/tango-master/data/val_audioset_sl.json"
            audioset_sl_path_train_val = "/ailab-train/speech/zhanghaomin/scps/tango-master/data/train_val_audioset_sl.json"
            if part == "train":
                audioset_sl_path = audioset_sl_path_train
            elif part == "train_val_audioset_sl":
                audioset_sl_path = audioset_sl_path_train_val
            else:
                audioset_sl_path = audioset_sl_path_val
            FN = 0
            with open(audioset_sl_path, "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"].rsplit(".", 1)[0]
                    if part in ["train", "train_val_audioset_sl"] and utt in test_utts:
                        FN += 1
                        continue
                    caption = jsondata["caption"]
                    audio = "/radiostorage/WavCaps/Zip_files/AudioSet_SL/mnt/fast/nobackup/scratch4weeks/xm00178/WavCaps/data/waveforms/AudioSet_SL_flac/" + utt + ".flac"
                    self.audioset_sl_inputs.append(caption)
                    self.audioset_sl_audios.append(audio)
                    self.audioset_sl_indices.append(N + index)
            main_process and print(part, "audioset_sl", len(self.audioset_sl_audios), "filtered", FN)
            self.inputs.extend(self.audioset_sl_inputs)
            self.audios.extend(self.audioset_sl_audios)
            self.indices.extend(self.audioset_sl_indices)
            N = len(self.audios)
            main_process and print(part, "audioset_sl audios", len(self.audios))
        
        if (audiocaps and part in ["train", "train_val_audioset_sl"]) or (part == "val_audiocaps"):
            self.audiocaps_inputs = []
            self.audiocaps_audios = []
            self.audiocaps_indices = []
            audiocaps_path_train = "/ailab-train/speech/zhanghaomin/scps/tango-master/data/audiocaps/train_audiocaps.json"
            audiocaps_path_val = "/ailab-train/speech/zhanghaomin/scps/tango-master/data/audiocaps/test_audiocaps.json"
            if scp_ac is not None:
                audiocaps_path_val = scp_ac
            if part in ["train", "train_val_audioset_sl"]:
                audiocaps_path = audiocaps_path_train
            else:
                audiocaps_path = audiocaps_path_val
            FN = 0
            with open(audiocaps_path, "r") as fr:
                lines = fr.readlines()
                if scp_ac is not None:
                    lines = lines[start_ac: end_ac]
                for index, line in enumerate(lines):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"]
                    if part in ["train", "train_val_audioset_sl"] and utt in test_utts:
                        FN += 1
                        continue
                    caption = jsondata["caption"]
                    audio = jsondata["audio"]
                    self.audiocaps_inputs.append(caption)
                    self.audiocaps_audios.append(audio)
                    self.audiocaps_indices.append(N + index)
            main_process and print(part, "audiocaps", len(self.audiocaps_audios), "filtered", FN)
            self.inputs.extend(self.audiocaps_inputs)
            self.audios.extend(self.audiocaps_audios)
            self.indices.extend(self.audiocaps_indices)
            N = len(self.audios)
            main_process and print(part, "audiocaps audios", len(self.audios))
        
        if bbc_soundeffects and part in ["train", "train_val_audioset_sl"]:
            self.bbc_soundeffects_inputs = []
            self.bbc_soundeffects_audios = []
            self.bbc_soundeffects_indices = []
            with open("/ailab-train/speech/zhanghaomin/scps/tango-master/data/train_bbc_sound_effects.json", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"]
                    bbc_soundeffects_utts[utt] = 1
                    caption = jsondata["caption"]
                    audio = "/radiostorage/WavCaps/Zip_files/BBC_Sound_Effects/mnt/fast/nobackup/scratch4weeks/xm00178/WavCaps/data/waveforms/BBC_Sound_Effects_flac/" + utt + ".flac"
                    self.bbc_soundeffects_inputs.append(caption)
                    self.bbc_soundeffects_audios.append(audio)
                    self.bbc_soundeffects_indices.append(N + index)
            main_process and print(part, "bbc_soundeffects", len(self.bbc_soundeffects_audios))
            self.inputs.extend(self.bbc_soundeffects_inputs)
            self.audios.extend(self.bbc_soundeffects_audios)
            self.indices.extend(self.bbc_soundeffects_indices)
            N = len(self.audios)
            main_process and print(part, "bbc_soundeffects audios", len(self.audios))
        
        if freesound and part in ["train", "train_val_audioset_sl"]:
            self.freesound_inputs = []
            self.freesound_audios = []
            self.freesound_indices = []
            with open("/ailab-train/speech/zhanghaomin/scps/tango-master/data/train_freesound.json", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"]
                    freesound_utts[utt] = 1
                    caption = jsondata["caption"]
                    audio = "/radiostorage/WavCaps/Zip_files/FreeSound/mnt/fast/nobackup/scratch4weeks/xm00178/WavCaps/data/waveforms/FreeSound_flac/" + utt + ".flac"
                    self.freesound_inputs.append(caption)
                    self.freesound_audios.append(audio)
                    self.freesound_indices.append(N + index)
            main_process and print(part, "freesound", len(self.freesound_audios))
            self.inputs.extend(self.freesound_inputs)
            self.audios.extend(self.freesound_audios)
            self.indices.extend(self.freesound_indices)
            N = len(self.audios)
            main_process and print(part, "freesound audios", len(self.audios))
        
        if soundbible and part in ["train", "train_val_audioset_sl"]:
            self.soundbible_inputs = []
            self.soundbible_audios = []
            self.soundbible_indices = []
            with open("/ailab-train/speech/zhanghaomin/scps/tango-master/data/train_soundbible.json", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"]
                    caption = jsondata["caption"]
                    audio = "/radiostorage/WavCaps/Zip_files/SoundBible/mnt/fast/nobackup/scratch4weeks/xm00178/WavCaps/data/waveforms/SoundBible_flac/" + utt + ".flac"
                    self.soundbible_inputs.append(caption)
                    self.soundbible_audios.append(audio)
                    self.soundbible_indices.append(N + index)
            main_process and print(part, "soundbible", len(self.soundbible_audios))
            self.inputs.extend(self.soundbible_inputs)
            self.audios.extend(self.soundbible_audios)
            self.indices.extend(self.soundbible_indices)
            N = len(self.audios)
            main_process and print(part, "soundbible audios", len(self.audios))
        
        if (soundeffects and part in ["train", "train_val_audioset_sl"]) or (part == "val_soundeffects"):
            self.soundeffects_inputs = []
            self.soundeffects_audios = []
            self.soundeffects_indices = []
            #soundeffects_path_train = "/zhanghaomin/codes2/audiocaption/wav_all_train.scp"
            #soundeffects_path_val = "/zhanghaomin/codes2/audiocaption/wav_all_val.scp"
            #soundeffects_path_train = "/zhanghaomin/codes2/audiocaption/wav_msclap_all_train.scp"
            soundeffects_path_train = train_file
            soundeffects_path_val = "/zhanghaomin/codes2/audiocaption/wav_msclap_all_val.scp"
            if part in ["train", "train_val_audioset_sl"]:
                soundeffects_path = soundeffects_path_train
            else:
                soundeffects_path = soundeffects_path_val
            with open(soundeffects_path, 'r') as fr:
                for index, line in enumerate(fr.readlines()):
                    if soundeffects_path.endswith("msclapcap_v1.list"):
                        utt, wav, caption1, score = line.strip().split('"@$&#"')
                        caption2 = "blank"
                        name = "blank"
                    else:
                        utt, wav, name, caption1, caption2 = line.strip().split('"@$&#"')
                    wav = wav.replace("/radiostorage/AudioGroup/", "/radiostorage/AudioGroup/")
                    period = int(utt.split('_')[-1])
                    self.soundeffects_inputs.append((caption1, caption2, name))
                    self.soundeffects_audios.append((wav, utt, period))
                    self.soundeffects_indices.append(N + index)
            main_process and print(part, "soundeffects", len(self.soundeffects_audios))
            self.inputs.extend(self.soundeffects_inputs)
            self.audios.extend(self.soundeffects_audios)
            self.indices.extend(self.soundeffects_indices)
            N = len(self.audios)
            main_process and print(part, "soundeffects audios", len(self.audios))
        
        if audioset and part in ["train", "train_val_audioset_sl"]:
            self.audioset_inputs = []
            self.audioset_audios = []
            self.audioset_indices = []
            FN = 0
            FN2 = 0
            if SCORE_THRESHOLD_TRAIN["audioset"] == "af-audioset":
                audioset_path = "/ailab-train/speech/zhanghaomin/scps/audioset/audioset_train_af.json"
            else:
                audioset_path = "/ckptstorage/zhanghaomin/audioset/audioset_train.json"
            with open(audioset_path, "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    if SCORE_THRESHOLD_TRAIN["audioset"] == "af-audioset":
                        utt = jsondata["id"]
                        if part in ["train", "train_val_audioset_sl"] and utt in test_utts:
                            FN += 1
                            continue
                        caption = jsondata["caption"]
                        audio = jsondata["audio"]
                    else:
                        utt = jsondata["id"]
                        if part in ["train", "train_val_audioset_sl"] and utt in test_utts:
                            FN += 1
                            continue
                        caption = jsondata["caption"]
                        #caption = caption.replace("@", ", ")
                        captions = caption.split("@")
                        captions_new = []
                        for c in captions:
                            if c in audioset_filter_labels:
                                audioset_filter_labels[c] += 1
                            else:
                                captions_new.append(c)
                        if len(captions_new) == 0:
                            FN2 += 1
                            continue
                        caption = "".join(captions_new)
                        audio = jsondata["audio"]
                    self.audioset_inputs.append(caption)
                    self.audioset_audios.append(audio)
                    self.audioset_indices.append(N + index)
            main_process and print(part, "audioset", len(self.audioset_audios), "filtered", FN, FN2, audioset_filter_labels)
            self.inputs.extend(self.audioset_inputs)
            self.audios.extend(self.audioset_audios)
            self.indices.extend(self.audioset_indices)
            N = len(self.audios)
            main_process and print(part, "audioset audios", len(self.audios))

        if bbc_soundeffects2 and part in ["train", "train_val_audioset_sl"]:
            self.bbc_soundeffects2_inputs = []
            self.bbc_soundeffects2_audios = []
            self.bbc_soundeffects2_indices = []
            FN = 0
            with open("/ckptstorage/zhanghaomin/BBCSoundEffects/bbcsoundeffects_train.json", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"]
                    if part in ["train", "train_val_audioset_sl"] and utt in bbc_soundeffects_utts:
                        FN += 1
                        continue
                    caption = jsondata["caption"]
                    caption = caption.split("(")[0].strip()
                    audio = jsondata["audio"]
                    self.bbc_soundeffects2_inputs.append(caption)
                    self.bbc_soundeffects2_audios.append(audio)
                    self.bbc_soundeffects2_indices.append(N + index)
            main_process and print(part, "bbc_soundeffects2", len(self.bbc_soundeffects2_audios), "filtered", FN)
            self.inputs.extend(self.bbc_soundeffects2_inputs)
            self.audios.extend(self.bbc_soundeffects2_audios)
            self.indices.extend(self.bbc_soundeffects2_indices)
            N = len(self.audios)
            main_process and print(part, "bbc_soundeffects2 audios", len(self.audios))
        
        if freesound2 and part in ["train", "train_val_audioset_sl"]:
            self.freesound2_inputs = []
            self.freesound2_audios = []
            self.freesound2_indices = []
            FN = 0
            with open("/ckptstorage/zhanghaomin/CLAP_freesound/freesound_train.json", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    utt = jsondata["id"]
                    if part in ["train", "train_val_audioset_sl"] and utt in freesound_utts:
                        FN += 1
                        continue
                    caption = jsondata["caption"]
                    caption = caption.split('"@$&#"')
                    #caption = caption[0].split("(")[0].strip()
                    caption = tuple([c.split("(")[0].strip() for c in caption])
                    audio = jsondata["audio"]
                    self.freesound2_inputs.append(caption)
                    self.freesound2_audios.append(audio)
                    self.freesound2_indices.append(N + index)
            main_process and print(part, "freesound2", len(self.freesound2_audios), "filtered", FN)
            self.inputs.extend(self.freesound2_inputs)
            self.audios.extend(self.freesound2_audios)
            self.indices.extend(self.freesound2_indices)
            N = len(self.audios)
            main_process and print(part, "freesound2 audios", len(self.audios))

        if tangopromptbank and part in ["train", "train_val_audioset_sl"]:
            self.tangopromptbank_inputs = []
            self.tangopromptbank_audios = []
            self.tangopromptbank_indices = []
            with open("/ailab-train/speech/zhanghaomin/scps/TangoPromptBank/data.json", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    caption = jsondata["captions"]
                    audio = jsondata["location"]
                    self.tangopromptbank_inputs.append(caption)
                    self.tangopromptbank_audios.append(audio)
                    self.tangopromptbank_indices.append(N + index)
            main_process and print(part, "tangopromptbank", len(self.tangopromptbank_audios))
            self.inputs.extend(self.tangopromptbank_inputs)
            self.audios.extend(self.tangopromptbank_audios)
            self.indices.extend(self.tangopromptbank_indices)
            N = len(self.audios)
            main_process and print(part, "tangopromptbank audios", len(self.audios))
        
        if musiccaps and part in ["train", "train_val_audioset_sl"]:
            self.musiccaps_inputs = []
            self.musiccaps_audios = []
            self.musiccaps_indices = []
            with open("/ailab-train/speech/zhanghaomin/scps/musiccap/musiccaps.jsonl", "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    caption = jsondata["caption"]
                    audio = jsondata["audio"]
                    self.musiccaps_inputs.append(caption)
                    self.musiccaps_audios.append(audio)
                    self.musiccaps_indices.append(N + index)
            main_process and print(part, "musiccaps", len(self.musiccaps_audios))
            self.inputs.extend(self.musiccaps_inputs)
            self.audios.extend(self.musiccaps_audios)
            self.indices.extend(self.musiccaps_indices)
            N = len(self.audios)
            main_process and print(part, "musiccaps audios", len(self.audios))
        
        if (audioset_sl_2ch and part in ["train", "train_val_audioset_sl"]) or (part == "val_audioset_sl_2ch"):
            self.audioset_sl_2ch_inputs = []
            self.audioset_sl_2ch_audios = []
            self.audioset_sl_2ch_indices = []
            audioset_sl_2ch_train = "/ckptstorage/zhanghaomin/audiosetsl/wavs/train.jsonl"
            audioset_sl_2ch_val = "/ckptstorage/zhanghaomin/audiosetsl/wavs/test.jsonl"
            if part in ["train", "train_val_audioset_sl"]:
                audioset_sl_2ch_path = audioset_sl_2ch_train
            else:
                audioset_sl_2ch_path = audioset_sl_2ch_val
            with open(audioset_sl_2ch_path, "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    caption = jsondata["caption"]
                    audio = jsondata["audio"]
                    self.audioset_sl_2ch_inputs.append(caption)
                    self.audioset_sl_2ch_audios.append(audio)
                    self.audioset_sl_2ch_indices.append(N + index)
            main_process and print(part, "audioset_sl_2ch", len(self.audioset_sl_2ch_audios))
            self.inputs.extend(self.audioset_sl_2ch_inputs)
            self.audios.extend(self.audioset_sl_2ch_audios)
            self.indices.extend(self.audioset_sl_2ch_indices)
            N = len(self.audios)
            main_process and print(part, "audioset_sl_2ch audios", len(self.audios))
        
        if (boom_epic and part in ["train", "train_val_audioset_sl"]) or (part == "val_boom_epic"):
            self.boom_epic_inputs = []
            self.boom_epic_audios = []
            self.boom_epic_indices = []
            #boom_epic_train = "/ckptstorage/zhanghaomin/giantsoundeffects/train_animals_mixture2.jsonl"
            #boom_epic_val = "/ckptstorage/zhanghaomin/giantsoundeffects/test_animals_mixture2.jsonl"
            boom_epic_train = "/ailab-train/speech/zhanghaomin/scps/giantsoundeffects/train.jsonl"
            boom_epic_val = "/ailab-train/speech/zhanghaomin/scps/giantsoundeffects/test.jsonl"
            if part in ["train", "train_val_audioset_sl"]:
                boom_epic_path = boom_epic_train
            else:
                boom_epic_path = boom_epic_val
            with open(boom_epic_path, "r") as fr:
                for index, line in enumerate(fr.readlines()):
                    jsondata = json.loads(line.strip())
                    caption = jsondata["caption"]
                    audio = jsondata["audio"]
                    self.boom_epic_inputs.append(caption)
                    self.boom_epic_audios.append(audio)
                    self.boom_epic_indices.append(N + index)
            main_process and print(part, "boom_epic", len(self.boom_epic_audios))
            repeats = 1
            for _ in range(repeats):
                self.inputs.extend(self.boom_epic_inputs)
                self.audios.extend(self.boom_epic_audios)
                self.indices.extend(self.boom_epic_indices)
            N = len(self.audios)
            main_process and print(part, "boom_epic audios", len(self.audios))
        self.boom_epic = boom_epic
        
        if vggsound:
            self.inputs_vggsound = []
            self.audios_vggsound = []
            self.indices_vggsound = []
            if part in ["train", "train_val_audioset_sl"]:
                path = "/ailab-train/speech/zhanghaomin/scps/VGGSound/train.scp"
                with open(path, "r") as fr:
                    for index, line in enumerate(fr.readlines()):
                        video_path, text = line.strip().split("\t")
                        self.inputs_vggsound.append("the sound of " + text.strip().replace("(", "").replace(")", ""))
                        self.audios_vggsound.append(video_path)
                        self.indices_vggsound.append(index)
                N = len(self.audios_vggsound)
                print(part, "vggsound train audios", len(self.audios_vggsound), device_id, num_processes)
            elif part == "val_vggsound":
                if vgg_test is not None:
                    path = vgg_test[0]
                    start = vgg_test[1]
                    end = vgg_test[2]
                else:
                    path = "/ailab-train/speech/zhanghaomin/scps/VGGSound/test.scp"
                    start = 0
                    end = 200
                with open(path, "r") as fr:
                    for index, line in enumerate(fr.readlines()[start:end]):
                        video_path, text = line.strip().split("\t")
                        self.inputs.append("the sound of " + text.strip().replace("(", "").replace(")", ""))
                        self.audios.append(video_path)
                        self.indices.append(N + index)
                N = len(self.audios)
                print(part, "vggsound eval audios", len(self.audios), device_id, num_processes)
        self.vggsound = vggsound
        self.video_drop_prompt = video_drop_prompt
        self.audio_drop_prompt = audio_drop_prompt
        self.device_id = device_id
        self.num_processes = num_processes
        self.bad_ids = {}
        self.video_encoder = video_encoder
        self.val_length = val_length if val_length is not None else torch_tools.MAX_TARGET_LEN
        print("val_length", self.val_length)
        
        #self.mapper = {}
        #for index, audio, text in zip(self.indices, self.audios, self.inputs):
        #    self.mapper[index] = [audio, text]

        if num_examples != -1:
            self.inputs, self.audios = self.inputs[:num_examples], self.audios[:num_examples]
            self.indices = self.indices[:num_examples]
        
        self.samples = samples
        self.stft = stft
        self.target_length = DURATION
        self.augment = augment
        self.part = part
        self.main_process = main_process
        self.SCORE_THRESHOLD_TRAIN = SCORE_THRESHOLD_TRAIN
        self.theta = theta
        self.multi = 4

    def __len__(self):
        return len(self.inputs)

    def get_num_instances(self):
        return len(self.inputs)

    def __getitem__(self, index):
        s1, s2, s3 = self.inputs[index], self.audios[index], self.indices[index]
        return s1, s2, s3

    def read_audio_from_video(self, video_path):
        if video_path.startswith("/ailab-train/speech/zhanghaomin/VGGSound/"):
            audio_path = video_path.replace("/video/", "/audio/").replace(".mp4", ".wav")
        else:
            audio_path = video_path.replace(".mp4", ".generated.wav")
        if os.path.exists(audio_path):
            #print("video wav exist", audio_path)
            waveform, sr = torchaudio.load(audio_path)
        else:
            #print("video wav not exist", video_path)
            try:
                clip = AudioFileClip(video_path)
                sound_array = np.array(list(clip.iter_frames()))
                waveform = torch.from_numpy(sound_array).transpose(0,1).to(torch.float32)
                waveform = waveform[0:1, :]
                if clip.fps != torch_tools.new_freq:
                    waveform = torchaudio.functional.resample(waveform, orig_freq=clip.fps, new_freq=torch_tools.new_freq)
                waveform = torch_tools.normalize_wav(waveform)
                torchaudio.save(audio_path, waveform, torch_tools.new_freq)
            except:
                print("Error read_audio_from_video", audio_path)
                traceback.print_exc()
                return None
        return waveform

    def collate_fn(self, data):
        # 452463+1471396->452463+3430704->452463+2978587 more 452463+1037241+15973+310169 real 1183416+2000
        # theta (1183416)*0.5/(452463+1037241+15973+310169)=0.3259
        # beta (452463+1037241+15973+310169+3430704)/(452463+1037241+15973+310169+1471396)=1.5960 (452463+1037241+15973+310169+2978587)/(452463+1037241+15973+310169+1471396)=1.4585
        if self.part in ["train", "train_val_audioset_sl"]:
            val = False
        else:
            val = True
        if self.audioset_sl_2ch:
            nch = 2
        else:
            nch = 1
        while True:
            if self.part in ["train", "train_val_audioset_sl"]:
                #print("data raw", len(data), data[0])
                #data_sampled = random.sample(data, self.samples)
                
                if (self.soundeffects or self.boom_epic) and self.theta > 0:
                    data_len = len(data)
                    data_1 = []
                    data_2 = []
                    for sample in data:
                        if isinstance(sample[1], tuple):
                            if sample[1][0].startswith("/radiostorage/"):
                                prefix = "/".join(sample[1][0].split("/")[:3])
                            else:
                                prefix = "/".join(sample[1][0].split("/")[:4])
                        else:
                            if sample[1].startswith("/radiostorage/"):
                                prefix = "/".join(sample[1].split("/")[:3])
                            else:
                                prefix = "/".join(sample[1].split("/")[:4])
                        if torch_tools.SOUNDEFFECT[prefix]:
                            data_2.append(sample)
                        else:
                            data_1.append(sample)
                    #print("data splitted", len(data_1), len(data_2), float(len(data_1))/len(data_2))
                    data_len_1 = len(data_1)
                    data_len_2 = len(data_2)
                    if data_len_1 == 0 or data_len_2 == 0:
                        data_1_sampled = data_1
                        data_2_sampled = data_2
                    else:
                        data_len_1_sampled = int(data_len_2 / self.theta)
                        data_len_2_sampled = int(data_len_1 * self.theta)
                        if data_len_1_sampled < data_len_1:
                            data_1_sampled = random.sample(data_1, data_len_1_sampled)
                            data_2_sampled = data_2
                        else:
                            data_1_sampled = data_1
                            data_2_sampled = random.sample(data_2, data_len_2_sampled)
                    #print("data sampled", len(data_1_sampled), len(data_2_sampled), float(len(data_1_sampled))/len(data_2_sampled), self.samples*cand)
                    data_sampled = data_1_sampled
                    data_sampled.extend(data_2_sampled)
                    data_sampled = random.sample(data_sampled, min(self.samples*cand, len(data_sampled)))
                    #print("data sampled", len(data_sampled))
                else:
                    data_sampled = random.sample(data, min(self.samples*cand, len(data)))
                    #print("data sampled", len(data_sampled))
            else:
                data_sampled = data
            dat = pd.DataFrame(data_sampled)
            text, audios, indices = [dat[i].tolist() for i in dat]
            
            if self.vggsound and val and self.part == "val_vggsound":
                #print("vggsound val", len(audios), text)
                fbanks = []
                fbank_lens = []
                video_paths = []
                text_selected = []
                for audio, txt in zip(audios, text):
                    waveform = self.read_audio_from_video(audio)
                    if waveform is None:
                        continue
                    length = self.val_length
                    waveform = waveform[:, :length*torch_tools.hop_size]
                    fbank = self.stft(waveform).transpose(-1,-2)
                    fbanks.append(fbank)
                    fbank_lens.append(fbank.shape[1])
                    video_paths.append(audio)
                    text_selected.append(txt)
                    #print("stft", waveform.shape, fbank.shape)
                max_length = max(fbank_lens)
                for i in range(len(fbanks)):
                    if fbanks[i].shape[1] < max_length:
                        fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
                mel = torch.cat(fbanks, 0)
                mel_len = torch.Tensor(fbank_lens).to(torch.int32)
                break
            
            if_clap_filter = False
            if self.part in ["val_audiocaps", "val_audioset_sl_2ch", "val_boom_epic"]:
                if_clap_filter = False
            mel, text_selected, _, _, _, mel_len = torch_tools.wav_to_fbank(audios, text, self.samples, self.target_length, self.stft, val, if_clap_filter, self.main_process, self.SCORE_THRESHOLD_TRAIN, nch)
            if mel is not None:
                if self.part in ["train", "train_val_audioset_sl"]:
                    if len(text_selected) > self.samples:
                        mel = mel[:self.samples,...]
                        text_selected = text_selected[:self.samples]
                        #waveform = waveform[:self.samples,...]
                        mel_len = mel_len[:self.samples]
                if self.vggsound:
                    video_paths = [None] * len(text_selected)
                else:
                    video_paths = None
                #print("mel", mel.shape if mel is not None else None, len(text_selected) if text_selected is not None else 0, mel_len, video_paths)
                break
        
        #mel = mel.unsqueeze(1)
        if self.augment != 0 and len(text_selected) > 1 and (not val):
            aug_num = len(text_selected) if self.augment == -1 else self.augment
            # the last batch of the training data may have only one instance
            # we check the length here so that the augmentation function doesn't throw an error
            mixed_mel, _, _, mixed_captions, _, mixed_mel_len = torch_tools.augment_wav_to_fbank(audios, text, aug_num, self.target_length, self.stft, self.main_process, self.SCORE_THRESHOLD_TRAIN, nch)
            #print("mixed_mel", mixed_mel.shape if mixed_mel is not None else None, len(mixed_captions) if mixed_captions is not None else 0, mixed_mel_len)
            if mixed_mel is not None:
                if mel.shape[1] < mixed_mel.shape[1]:
                    mel = torch.cat([mel, torch.zeros(mel.shape[0], mixed_mel.shape[1]-mel.shape[1], mel.shape[2])], 1)
                elif mixed_mel.shape[1] < mel.shape[1]:
                    mixed_mel = torch.cat([mixed_mel, torch.zeros(mixed_mel.shape[0], mel.shape[1]-mixed_mel.shape[1], mixed_mel.shape[2])], 1)
                #mixed_mel = mixed_mel.unsqueeze(1)
                mel = torch.cat([mel, mixed_mel], 0)
                text_selected += mixed_captions
                mel_len = torch.cat([mel_len, mixed_mel_len], 0)
                if self.vggsound:
                    video_paths.extend([None] * len(mixed_captions))
                else:
                    video_paths = None
            #print("mel_final", mel.shape if mel is not None else None, len(text_selected) if text_selected is not None else 0, mel_len)
        
        if self.vggsound and (not val):
            video_paths = [None] * len(text_selected)
            fbanks = []
            fbank_lens = []
            audios = []
            video_captions = []
            indices = random.sample([self.indices_vggsound[i] for i in range(self.device_id, len(self.indices_vggsound), self.num_processes)], self.vggsound*10)
            indices_featured = []
            indices_nonfeatured = []
            for i in indices:
                if i in self.bad_ids:
                    continue
                if self.audios_vggsound[i].startswith("/ailab-train/speech/zhanghaomin/VGGSound/"):
                    if self.video_encoder == "clip_vit":
                        feature_path = self.audios_vggsound[i].replace("/video/", "/feature/").replace(".mp4", ".npz")
                    elif self.video_encoder == "clip_vit2":
                        feature_path = self.audios_vggsound[i].replace("/video/", "/feature_clip_vit2/").replace(".mp4", ".npz")
                    elif self.video_encoder == "clip_convnext":
                        feature_path = self.audios_vggsound[i].replace("/video/", "/feature_clip_convnext/").replace(".mp4", ".npz")
                    elif self.video_encoder == "dinov2":
                        feature_path = self.audios_vggsound[i].replace("/video/", "/feature_dinov2/").replace(".mp4", ".npz")
                    elif self.video_encoder == "mixed":
                        feature_path = self.audios_vggsound[i].replace("/video/", "/feature_mixed/").replace(".mp4", ".npz")
                    else:
                        raise Exception("Invalid video_encoder " + self.video_encoder)
                else:
                    if self.video_encoder == "clip_vit":
                        feature_path = self.audios_vggsound[i].replace(".mp4", ".generated.npz")
                    elif self.video_encoder == "clip_vit2":
                        feature_path = self.audios_vggsound[i].replace(".mp4", ".generated.clip_vit2.npz")
                    elif self.video_encoder == "clip_convnext":
                        feature_path = self.audios_vggsound[i].replace(".mp4", ".generated.clip_convnext.npz")
                    elif self.video_encoder == "dinov2":
                        feature_path = self.audios_vggsound[i].replace(".mp4", ".generated.dinov2.npz")
                    elif self.video_encoder == "mixed":
                        feature_path = self.audios_vggsound[i].replace(".mp4", ".generated.mixed.npz")
                    else:
                        raise Exception("Invalid video_encoder " + self.video_encoder)
                if os.path.exists(feature_path):
                    indices_featured.append(i)
                else:
                    indices_nonfeatured.append(i)
                    if len(indices_nonfeatured) >= self.vggsound:
                        break
            #print(self.device_id, self.bad_ids, indices, indices_featured, indices_nonfeatured)
            indices = indices_nonfeatured[:self.vggsound]
            if len(indices) < self.vggsound:
                indices.extend(indices_featured[:self.vggsound-len(indices)])
            for i in indices:
                waveform = self.read_audio_from_video(self.audios_vggsound[i])
                if waveform is None:
                    print("Error audio in video", i, self.audios_vggsound[i], self.bad_ids)
                    self.bad_ids[i] = 1
                    continue
                length = random.randint(torch_tools.MIN_TARGET_LEN, torch_tools.MAX_TARGET_LEN)
                waveform = waveform[:, :length*torch_tools.hop_size]
                fbank = self.stft(waveform).transpose(-1,-2)
                fbanks.append(fbank)
                fbank_lens.append(fbank.shape[1])
                audios.append(self.audios_vggsound[i])
                video_captions.append(self.inputs_vggsound[i])
                #print("stft", waveform.shape, fbank.shape)
            max_length = max(fbank_lens)
            for i in range(len(fbanks)):
                if fbanks[i].shape[1] < max_length:
                    fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
            video_mel = torch.cat(fbanks, 0)
            video_mel_len = torch.Tensor(fbank_lens).to(torch.int32)
            #print("video_mel", video_mel.shape if video_mel is not None else None, len(video_captions) if video_captions is not None else 0, video_mel_len)
            if video_mel is not None:
                if mel.shape[1] < video_mel.shape[1]:
                    mel = torch.cat([mel, torch.zeros(mel.shape[0], video_mel.shape[1]-mel.shape[1], mel.shape[2])], 1)
                elif video_mel.shape[1] < mel.shape[1]:
                    video_mel = torch.cat([video_mel, torch.zeros(video_mel.shape[0], mel.shape[1]-video_mel.shape[1], video_mel.shape[2])], 1)
                #video_mel = video_mel.unsqueeze(1)
                mel = torch.cat([mel, video_mel], 0)
                text_selected += video_captions
                mel_len = torch.cat([mel_len, video_mel_len], 0)
                video_paths.extend(audios)
            #print("mel_final", mel.shape if mel is not None else None, len(text_selected) if text_selected is not None else 0, mel_len, video_paths)
        
        return [text_selected, mel, video_paths, mel_len, self.video_drop_prompt, self.audio_drop_prompt]


class Text2SpeechDataset(Dataset):
    def __init__(self, samples=-1, stft=None, val=False):
        self.inputs = []
        self.audios = []
        self.indices = []

        train_scp = "/ckptstorage/zhanghaomin/docker/ximalaya/ximalaya_process/data_scp/train.json"
        test_scp = "/ckptstorage/zhanghaomin/docker/ximalaya/ximalaya_process/data_scp/test.json"
        scp = train_scp if not val else test_scp
        index = 0
        with open(scp, "r") as fr:
            for line in fr.readlines():
                data = json.loads(line.strip())
                wav = data["wav"]
                text = data["text"]
                if len(text) < 2:
                    continue
                self.inputs.append(text)
                self.audios.append(wav)
                self.indices.append(index)
                index += 1
        print("data size", len(self.inputs), val)
        self.samples = samples
        self.stft = stft
        self.sample_rate = 24000
        self.multi = 8
        self.val = val

    def __len__(self):
        return len(self.inputs)

    def get_num_instances(self):
        return len(self.inputs)

    def __getitem__(self, index):
        s1, s2, s3 = self.inputs[index], self.audios[index], self.indices[index]
        return s1, s2, s3

    def collate_fn(self, data):
        dat = pd.DataFrame(data)
        texts, audios, indices = [dat[i].tolist() for i in dat]
        
        fbanks = []
        fbank_lens = []
        text_selected = []
        for text, audio in zip(texts, audios):
            waveform, sr = torchaudio.load(audio)
            waveform = waveform[0:1, :]
            if sr != self.sample_rate:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=self.sample_rate)
            waveform = torch_tools.normalize_wav(waveform)
            fbank = self.stft(waveform).transpose(-1,-2)
            #print("stft", waveform.shape, fbank.shape)
            if self.val:
                if waveform.shape[1] / float(self.sample_rate) < 2.0 or waveform.shape[1] / float(self.sample_rate) > 15.0:
                    continue
            else:
                if waveform.shape[1] / float(self.sample_rate) < 1.0 or waveform.shape[1] / float(self.sample_rate) > 20.0:
                    continue
            fbanks.append(fbank)
            fbank_lens.append(fbank.shape[1])
            text_selected.append(text)
            if self.samples > 0 and len(text_selected) >= self.samples:
                break
        if self.samples > 0 and len(text_selected) > self.samples:
            fbanks = fbanks[:self.samples]
            fbank_lens = fbank_lens[:self.samples]
            text_selected = text_selected[:self.samples]
        max_length = max(fbank_lens)
        for i in range(len(fbanks)):
            if fbanks[i].shape[1] < max_length:
                fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
        mel = torch.cat(fbanks, 0)
        mel_len = torch.Tensor(fbank_lens).to(torch.int32)
        return [text_selected, mel, None, mel_len, None]