Spaces:
Running
Running
File size: 23,268 Bytes
1991049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import torch
import torchaudio
import random
import itertools
import numpy as np
####from tools.mix import mix
from e2_tts_pytorch.mix import mix
import time
import traceback
import os
#from datasets import load_dataset
####from transformers import ClapModel, ClapProcessor
####clap = ClapModel.from_pretrained("/ckptstorage/zhanghaomin/models/EnCLAP/larger_clap_general/").to("cpu")
####clap.eval()
####for param in clap.parameters():
#### param.requires_grad = False
####clap_processor = ClapProcessor.from_pretrained("/ckptstorage/zhanghaomin/models/EnCLAP/larger_clap_general/")
#from msclap import CLAP
#clap_model = CLAP("/ckptstorage/zhanghaomin/models/msclap/clapcap_weights_2023.pth", version="clapcap", use_cuda=False)
#clap_model.clapcap.eval()
#for param in clap_model.clapcap.parameters():
# param.requires_grad = False
#new_freq = 16000
#hop_size = 160
new_freq = 24000
#hop_size = 256
hop_size = 320
#total_length = 1024
#MIN_TARGET_LEN = 281
#MAX_TARGET_LEN = 937
total_length = 750
MIN_TARGET_LEN = 750
MAX_TARGET_LEN = 750
#LEN_D = 1
LEN_D = 0
clap_freq = 48000
msclap_freq = 44100
max_len_in_seconds = 10
max_len_in_seconds_msclap = 7
#period_length = 30
period_length = 7
cut_length = 10
def normalize_wav(waveform):
waveform = waveform - torch.mean(waveform)
waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
return waveform * 0.5
def _pad_spec(fbank, target_length=total_length):
batch, n_frames, channels = fbank.shape
p = target_length - n_frames
if p > 0:
pad = torch.zeros(batch, p, channels).to(fbank.device)
fbank = torch.cat([fbank, pad], 1)
elif p < 0:
fbank = fbank[:, :target_length, :]
if channels % 2 != 0:
fbank = fbank[:, :, :-1]
return fbank
SCORE_THRESHOLD_VAL = 0.15
#SCORE_THRESHOLD_TRAIN = {
# "/zhanghaomin/datas/audiocaps": -np.inf,
# "/radiostorage/WavCaps": -np.inf,
# "/radiostorage/AudioGroup": -np.inf,
# "/ckptstorage/zhanghaomin/audioset": -np.inf,
# "/ckptstorage/zhanghaomin/BBCSoundEffects": -np.inf,
# "/ckptstorage/zhanghaomin/CLAP_freesound": -np.inf,
#}
SOUNDEFFECT = {
"/zhanghaomin/datas/audiocaps": False,
"/radiostorage/WavCaps": False,
"/radiostorage/AudioGroup": True,
"/ckptstorage/zhanghaomin/audioset": False,
"/ckptstorage/zhanghaomin/BBCSoundEffects": False,
"/ckptstorage/zhanghaomin/CLAP_freesound": False,
"/zhanghaomin/datas/musiccap": False,
"/ckptstorage/zhanghaomin/TangoPromptBank": False,
"/ckptstorage/zhanghaomin/audiosetsl": False,
"/ckptstorage/zhanghaomin/giantsoundeffects": True,
}
FILTER_NUM = {
"/zhanghaomin/datas/audiocaps": [0,0],
"/radiostorage/WavCaps": [0,0],
"/radiostorage/AudioGroup": [0,0],
"/ckptstorage/zhanghaomin/audioset": [0,0],
"/ckptstorage/zhanghaomin/BBCSoundEffects": [0,0],
"/ckptstorage/zhanghaomin/CLAP_freesound": [0,0],
"/zhanghaomin/datas/musiccap": [0,0],
"/ckptstorage/zhanghaomin/TangoPromptBank": [0,0],
"/ckptstorage/zhanghaomin/audiosetsl": [0,0],
"/ckptstorage/zhanghaomin/giantsoundeffects": [0,0],
}
TURNOFF_CLAP_FILTER_GLOBAL = False
def pad_wav(waveform, segment_length, text, prefix, val):
waveform_length = waveform.shape[1]
if segment_length is None or waveform_length == segment_length:
return waveform, text
elif waveform_length > segment_length:
return waveform[:, :segment_length], text
else:
if val:
if (not SOUNDEFFECT[prefix]) or (waveform_length > segment_length / 3.0):
pad_wav = torch.zeros((waveform.shape[0], segment_length-waveform_length)).to(waveform.device)
waveform = torch.cat([waveform, pad_wav], 1)
return waveform, text
else:
min_repeats = max(int(segment_length / 3.0 // waveform_length), 2)
max_repeats = segment_length // waveform_length
if val:
repeats = (min_repeats + max_repeats) // 2
else:
repeats = random.randint(min_repeats, max_repeats)
waveform = torch.cat([waveform]*repeats, 1)
if waveform.shape[1] < segment_length:
pad_wav = torch.zeros((waveform.shape[0], segment_length-waveform.shape[1])).to(waveform.device)
waveform = torch.cat([waveform, pad_wav], 1)
#if text[-1] in [",", "."]:
# text = text[:-1] + " repeat " + str(repeats) + " times" + text[-1]
#else:
# text = text + " repeat " + str(repeats) + " times"
return waveform, text
else:
repeats = segment_length // waveform_length + 1
waveform = torch.cat([waveform]*repeats, 1)
assert(waveform.shape[0] == 1 and waveform.shape[1] >= segment_length)
return waveform[:, :segment_length], text
def msclap_generate(waveform, freq):
waveform_msclap = torchaudio.functional.resample(waveform, orig_freq=freq, new_freq=msclap_freq)[0]
start = 0
end = waveform_msclap.shape[0]
if waveform_msclap.shape[0] > msclap_freq*max_len_in_seconds_msclap:
start = random.randint(waveform_msclap.shape[0]-msclap_freq*max_len_in_seconds_msclap)
end = start+msclap_freq*max_len_in_seconds_msclap
waveform_msclap = waveform_msclap[start: end]
if waveform_msclap.shape[0] < msclap_freq*max_len_in_seconds_msclap:
waveform_msclap = torch.cat([waveform_msclap, torch.zeros(msclap_freq*max_len_in_seconds_msclap-waveform_msclap.shape[0])])
waveform_msclap = waveform_msclap.reshape(1,1,msclap_freq*max_len_in_seconds_msclap)
caption = clap_model.generate_caption(waveform_msclap)[0]
return caption, (start/float(msclap_freq), end/float(msclap_freq))
def do_clap_filter(waveform, text, filename, val, if_clap_filter, main_process, SCORE_THRESHOLD_TRAIN):
global FILTER_NUM
if isinstance(filename, tuple):
filename = filename[0]
if filename.startswith("/radiostorage/"):
prefix = "/".join(filename.split("/")[:3])
else:
prefix = "/".join(filename.split("/")[:4])
soundeffect = SOUNDEFFECT[prefix]
if not if_clap_filter:
return np.inf, False, (None, None, soundeffect)
score_threshold = SCORE_THRESHOLD_VAL if val else SCORE_THRESHOLD_TRAIN
if not if_clap_filter or TURNOFF_CLAP_FILTER_GLOBAL:
score_threshold = -np.inf
else:
if not val:
score_threshold = SCORE_THRESHOLD_TRAIN[prefix]
#print(prefix, score_threshold)
resampled = torchaudio.functional.resample(waveform.reshape(1, -1), orig_freq=new_freq, new_freq=clap_freq)[0].numpy()
resampled = resampled[:clap_freq*max_len_in_seconds]
inputs = clap_processor(text=[text], audios=[resampled], return_tensors="pt", padding=True, sampling_rate=clap_freq)
inputs = {k: v.to("cpu") for k, v in inputs.items()}
with torch.no_grad():
outputs = clap(**inputs)
score = torch.dot(outputs.text_embeds[0,:], outputs.audio_embeds[0,:]).item()
#print("do_clap_filter:", filename, text, resampled.shape, outputs.logits_per_audio, outputs.logits_per_text, score, score < score_threshold)
if torch.any(torch.isnan(outputs.text_embeds)) or torch.any(torch.isnan(outputs.audio_embeds)):
return -np.inf, True, None
if main_process and if_clap_filter and not TURNOFF_CLAP_FILTER_GLOBAL:
FILTER_NUM[prefix][0] += 1
if score < score_threshold:
FILTER_NUM[prefix][1] += 1
if FILTER_NUM[prefix][0] % 10000 == 0 or FILTER_NUM[prefix][0] == 1000:
print(prefix, FILTER_NUM[prefix][0], FILTER_NUM[prefix][1]/float(FILTER_NUM[prefix][0]))
return score, score < score_threshold, (outputs.text_embeds, outputs.audio_embeds, soundeffect)
def read_wav_file(filename, text, segment_length, val, if_clap_filter, main_process, SCORE_THRESHOLD_TRAIN, nch):
try:
if isinstance(filename, tuple):
if filename[0].startswith("/radiostorage/"):
prefix = "/".join(filename[0].split("/")[:3])
else:
prefix = "/".join(filename[0].split("/")[:4])
#print(filename, text, segment_length, val)
wav, utt, period = filename
#size = os.path.getsize(wav)
#if size > 200000000:
# print("Exception too large file:", filename, text, size)
# return None, None, None
base, name = wav.rsplit("/", 1)
temp_base = "/ailab-train/speech/zhanghaomin/wav_temp/" + base.replace("/", "__") + "/"
temp_filename = temp_base + name
if os.path.exists(temp_filename):
waveform, sr = torchaudio.load(temp_filename)
else:
#start = time.time()
waveform0, sr = torchaudio.load(wav)
#end = time.time()
#print("load", end-start, wav)
waveform = torchaudio.functional.resample(waveform0, orig_freq=sr, new_freq=new_freq)[0:nch, :]
#if nch >= 2:
# waveform = torch.cat([waveform.mean(axis=0, keepdims=True), waveform], 0)
#print("resample", time.time()-end, wav)
waveform = waveform[:, new_freq*period*period_length: new_freq*(period+1)*period_length] # 0~period_length s
waveform = waveform[:, :new_freq*cut_length]
os.makedirs(temp_base, exist_ok=True)
torchaudio.save(temp_filename, waveform, new_freq)
start = 0
if waveform.shape[1] > new_freq*max_len_in_seconds:
if not val:
start = random.randint(0, waveform.shape[1]-new_freq*max_len_in_seconds)
waveform = waveform[:, start: start+new_freq*max_len_in_seconds]
if val:
text_index = 0
else:
#text_index = random.choice([0,1,2])
#text_index = random.choice([0,1])
text_index = 0
text = text[text_index]
#text, timestamps = msclap_generate(waveform0[:, sr*period*period_length: sr*(period+1)*period_length], sr)
#waveform = waveform[int(timestamps[0]*new_freq): int(timestamps[1]*new_freq)]
#print(waveform.shape, text)
score, filtered, embeddings = do_clap_filter(waveform[0, :], text, filename, val, if_clap_filter, main_process, SCORE_THRESHOLD_TRAIN)
if filtered:
print("Exception below threshold:", filename, text, score)
return None, None, None
else:
if filename.startswith("/radiostorage/"):
prefix = "/".join(filename.split("/")[:3])
else:
prefix = "/".join(filename.split("/")[:4])
#size = os.path.getsize(filename)
#if size > 200000000:
# print("Exception too large file:", filename, text, size)
# return None, None, None
base, name = filename.rsplit("/", 1)
temp_base = "/ailab-train/speech/zhanghaomin/wav_temp/" + base.replace("/", "__") + "/"
temp_filename = temp_base + name
if os.path.exists(temp_filename):
#print("wav exist", temp_filename)
waveform, sr = torchaudio.load(temp_filename)
else:
#print("wav not exist", filename)
#start = time.time()
waveform, sr = torchaudio.load(filename) # Faster!!!
#end = time.time()
#print("load", end-start, filename)
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=new_freq)[0:nch, :]
#if nch >= 2:
# waveform = torch.cat([waveform.mean(axis=0, keepdims=True), waveform], 0)
#print("resample", time.time()-end, filename)
waveform = waveform[:, :new_freq*cut_length]
os.makedirs(temp_base, exist_ok=True)
torchaudio.save(temp_filename, waveform, new_freq)
start = 0
if waveform.shape[1] > new_freq*max_len_in_seconds:
if not val:
start = random.randint(0, waveform.shape[1]-new_freq*max_len_in_seconds)
waveform = waveform[:, start: start+new_freq*max_len_in_seconds]
if isinstance(text, tuple):
if val:
text_index = 0
else:
text_index = random.choice(list(range(len(text))))
text = text[text_index]
score, filtered, embeddings = do_clap_filter(waveform[0, :], text, filename, val, if_clap_filter, main_process, SCORE_THRESHOLD_TRAIN)
if filtered:
print("Exception below threshold:", filename, text, score)
return None, None, None
except Exception as e:
print("Exception load:", filename, text)
traceback.print_exc()
return None, None, None
#try:
# waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=new_freq)[0]
#except Exception as e:
# print("Exception resample:", waveform.shape, sr, filename, text)
# return None, None, None
if (waveform.shape[1] / float(new_freq) < 0.2) and (not SOUNDEFFECT[prefix]):
print("Exception too short wav:", waveform.shape, sr, new_freq, filename, text)
traceback.print_exc()
return None, None, None
try:
waveform = normalize_wav(waveform)
except Exception as e:
print ("Exception normalizing:", waveform.shape, sr, new_freq, filename, text)
traceback.print_exc()
#waveform = torch.ones(sample_freq*max_len_in_seconds)
return None, None, None
waveform, text = pad_wav(waveform, segment_length, text, prefix, val)
waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
waveform = 0.5 * waveform
#print(text)
return waveform, text, embeddings
def get_mel_from_wav(audio, _stft):
audio = torch.nan_to_num(torch.clip(audio, -1, 1))
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
return melspec, log_magnitudes_stft, energy
def argmax_lst(lst):
return max(range(len(lst)), key=lst.__getitem__)
def select_segment(waveform, target_length):
ch, wav_length = waveform.shape
assert(ch == 1 and wav_length == total_length * hop_size)
energy = []
for i in range(total_length):
energy.append(torch.mean(torch.abs(waveform[:, i*hop_size: (i+1)*hop_size])))
#sum_energy = []
#for i in range(total_length-target_length+1):
# sum_energy.append(sum(energy[i: i+target_length]))
sum_energy = [sum(energy[:target_length])]
for i in range(1, total_length-target_length+1):
sum_energy.append(sum_energy[-1]-energy[i-1]+energy[i+target_length-1])
start = argmax_lst(sum_energy)
segment = waveform[:, start*hop_size: (start+target_length)*hop_size]
ch, wav_length = segment.shape
assert(ch == 1 and wav_length == target_length * hop_size)
return segment
def wav_to_fbank(paths, texts, num, target_length=total_length, fn_STFT=None, val=False, if_clap_filter=True, main_process=True, SCORE_THRESHOLD_TRAIN="", nch=1):
assert fn_STFT is not None
#raw_results = [read_wav_file(path, text, target_length * hop_size, val, if_clap_filter, main_process, SCORE_THRESHOLD_TRAIN, nch) for path, text in zip(paths, texts)]
results = []
#for result in raw_results:
# if result[0] is not None:
# results.append(result)
for path, text in zip(paths, texts):
result = read_wav_file(path, text, target_length * hop_size, val, if_clap_filter, main_process, SCORE_THRESHOLD_TRAIN, nch)
if result[0] is not None:
results.append(result)
if num > 0 and len(results) >= num:
break
if len(results) == 0:
####return None, None, None, None, None
return None, None, None, None, None, None
####waveform = torch.cat([result[0] for result in results], 0)
texts = [result[1] for result in results]
embeddings = [result[2] for result in results]
####fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
####fbank = fbank.transpose(1, 2)
####log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
####fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
#### log_magnitudes_stft, target_length
####)
####return fbank, texts, embeddings, log_magnitudes_stft, waveform
####fbank = fn_STFT(waveform)
fbanks = []
fbank_lens = []
for result in results:
if not val:
length = random.randint(MIN_TARGET_LEN, MAX_TARGET_LEN)
else:
length = (MIN_TARGET_LEN + MAX_TARGET_LEN) // 2
fbank_lens.append(length+LEN_D)
if not val:
waveform = select_segment(result[0], length)
else:
waveform = result[0][:, :length*hop_size]
fbank = fn_STFT(waveform).transpose(-1,-2)
#print("stft", waveform.shape, fbank.shape)
fbanks.append(fbank)
max_length = max(fbank_lens)
for i in range(len(fbanks)):
if fbanks[i].shape[1] < max_length:
fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
fbank = torch.cat(fbanks, 0)
fbank_lens = torch.Tensor(fbank_lens).to(torch.int32)
#print("fbank", fbank.shape, fbank_lens)
return fbank, texts, None, None, None, fbank_lens
def uncapitalize(s):
if s:
return s[:1].lower() + s[1:]
else:
return ""
def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=total_length, main_process=True, SCORE_THRESHOLD_TRAIN="", nch=1):
sound1, caption1, embeddings1 = read_wav_file(path1, caption1, target_length * hop_size, False, False, main_process, SCORE_THRESHOLD_TRAIN, nch)#[0].numpy()
sound2, caption2, embeddings2 = read_wav_file(path2, caption2, target_length * hop_size, False, False, main_process, SCORE_THRESHOLD_TRAIN, nch)#[0].numpy()
if sound1 is not None and sound2 is not None:
mixed_sound = mix(sound1.numpy(), sound2.numpy(), 0.5, new_freq)
mixed_sound = mixed_sound.astype(np.float32)
mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2))
#resampled = torchaudio.functional.resample(torch.from_numpy(mixed_sound).reshape(1, -1), orig_freq=new_freq, new_freq=clap_freq)[0].numpy()
#resampled = resampled[:clap_freq*max_len_in_seconds]
#inputs = clap_processor(text=[mixed_caption], audios=[resampled], return_tensors="pt", padding=True, sampling_rate=clap_freq)
#inputs = {k: v.to("cpu") for k, v in inputs.items()}
#with torch.no_grad():
# outputs = clap(**inputs)
if not (embeddings1[2] or embeddings2[2]):
filename = path1
else:
filename = "/radiostorage/AudioGroup"
score, filtered, embeddings = do_clap_filter(torch.from_numpy(mixed_sound)[0, :], mixed_caption, filename, False, False, main_process, SCORE_THRESHOLD_TRAIN)
#print(score, filtered, embeddings if embeddings is None else embeddings[2], path1, path2, filename)
if filtered:
#print("Exception below threshold:", path1, path2, caption1, caption2, filename, score)
return None, None, None
return mixed_sound, mixed_caption, embeddings
else:
return None, None, None
def augment(paths, texts, num_items=4, target_length=total_length, main_process=True, SCORE_THRESHOLD_TRAIN="", nch=1):
mixed_sounds, mixed_captions, mixed_embeddings = [], [], []
combinations = list(itertools.combinations(list(range(len(texts))), 2))
random.shuffle(combinations)
if len(combinations) < num_items:
selected_combinations = combinations
else:
selected_combinations = combinations[:num_items]
for (i, j) in selected_combinations:
new_sound, new_caption, new_embeddings = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length, main_process, SCORE_THRESHOLD_TRAIN, nch)
if new_sound is not None:
mixed_sounds.append(new_sound)
mixed_captions.append(new_caption)
mixed_embeddings.append(new_embeddings)
if len(mixed_sounds) == 0:
return None, None, None
waveform = torch.tensor(np.concatenate(mixed_sounds, 0))
waveform = waveform / (torch.max(torch.abs(waveform[0, :])) + 1e-8)
waveform = 0.5 * waveform
return waveform, mixed_captions, mixed_embeddings
def augment_wav_to_fbank(paths, texts, num_items=4, target_length=total_length, fn_STFT=None, main_process=True, SCORE_THRESHOLD_TRAIN="", nch=1):
assert fn_STFT is not None
waveform, captions, embeddings = augment(paths, texts, num_items, target_length, main_process, SCORE_THRESHOLD_TRAIN, nch)
if waveform is None:
####return None, None, None, None, None
return None, None, None, None, None, None
####fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
####fbank = fbank.transpose(1, 2)
####log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2)
####
####fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
#### log_magnitudes_stft, target_length
####)
####
####return fbank, log_magnitudes_stft, waveform, captions, embeddings
####fbank = fn_STFT(waveform)
fbanks = []
fbank_lens = []
for i in range(waveform.shape[0]):
length = random.randint(MIN_TARGET_LEN, MAX_TARGET_LEN)
fbank_lens.append(length+LEN_D)
####fbank = fn_STFT(waveform[i:i+1, :length*hop_size]).transpose(-1,-2)
fbank = fn_STFT(select_segment(waveform[i:i+1, :], length)).transpose(-1,-2)
fbanks.append(fbank)
max_length = max(fbank_lens)
for i in range(len(fbanks)):
if fbanks[i].shape[1] < max_length:
fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
fbank = torch.cat(fbanks, 0)
fbank_lens = torch.Tensor(fbank_lens).to(torch.int32)
return fbank, None, None, captions, None, fbank_lens |