File size: 3,309 Bytes
ebe027e
 
9b5b26a
 
 
c19d193
6aae614
8fe992b
9b5b26a
c44fd98
 
ed1c2b6
 
c44fd98
 
9b5b26a
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
c44fd98
76ce70e
ed1c2b6
c44fd98
 
 
 
 
19c8232
 
 
 
 
 
c44fd98
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
8c01ffb
36fea3e
 
 
 
 
 
89c5fbe
36fea3e
a7c798d
be71535
549cb73
361085c
be71535
549cb73
36fea3e
8c01ffb
c44fd98
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
d2f6a24
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
from smolagents import LiteLLMModel
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI
from gradio_client import Client

from PIL import Image

# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"
# -- my tool
# @tool
def get_image(img_description:str) -> Image.Image: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that generate an image from a textual description 
    Args:
        img_description: a sting containing the description of the image the user wants to get
    """
    # client = Client("agents-course/text-to-image")
    # result = client.predict(
    # 		param_0="Hello!!",
    # 		api_name="/predict"
    #         )
    return image_generation_tool.forward(img_description)
# -- my tool end


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 


# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )

model = LiteLLMModel(
    # model_id="ollama_chat/qwen2:7b",  # Or try other Ollama-supported models 
    # model_id="ollama/qwen2:7b",  # Or try other Ollama-supported models 
    model_id="ollama_chat/gemma3:1b",
    api_base="http://127.0.0.1:11434", # Default Ollama local server
    # api_base="http://0.0.0.0:11434",  
    # num_ctx=8192,
)



with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()