File size: 5,725 Bytes
1f2c355
9ebc767
1f2c355
 
f7015ee
 
1f2c355
 
 
 
f7015ee
 
 
 
1f2c355
f7015ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f2c355
 
 
 
 
 
 
f7015ee
1f2c355
f7015ee
9ebc767
 
f7015ee
1f2c355
 
f7015ee
 
 
1f2c355
f7015ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ebc767
 
f7015ee
1f2c355
f7015ee
 
1f2c355
 
 
f7015ee
 
 
 
 
 
 
 
 
 
 
 
 
1f2c355
 
f7015ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f2c355
 
f7015ee
9ebc767
 
f7015ee
 
1f2c355
f7015ee
 
 
 
 
 
1f2c355
 
f7015ee
 
 
 
 
 
 
 
1f2c355
9ebc767
 
 
 
 
 
 
 
 
 
 
 
f7015ee
 
9ebc767
 
f7015ee
 
9ebc767
 
 
 
 
f7015ee
 
9ebc767
 
f7015ee
 
 
 
9ebc767
 
 
 
f7015ee
 
 
 
9ebc767
 
 
 
 
 
 
 
 
 
 
 
f7015ee
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import streamlit as st
from dynamical_system import invasion_fitness, invasion_fitness2, invasion_fitness3, pop_dynamics2
import numpy as np
from tools import plot_3D_invfitness, plot_invasionfitness, make_interactive_video, plot_PIP
from scipy.integrate import solve_ivp
import plotly.graph_objects as go

st.set_page_config(layout="wide")
st.title("Adaptive dynamics")

st.subheader("Example 1: When there is no cost on reproduction")
st.write(
    r"""
The ecological dynamics of the resident is

$\frac{dn_r}{dt} = n_r(z_r - \alpha n_r)$

where $z_r$ is the intrinsic growth rate of the resident, 
$\alpha$ is the competition coefficient among resident individual

The resident reaches equilibrium $n^* = \frac{z_r}{\alpha}$ before a mutant arises.
New mutant with a different intrinsic growth rate $z_m$ arises has dynamics as followed

$\frac{dn_m}{dt} = n_m(z_m - \alpha (n_r + n_m))$

The mutant growth rate is $r(z_m, z) = z_m - \alpha n^*$. 
This is also the invasion fitness of the mutant.
The invasion fitness depends on the mutant's trait value $z_m$, 
and the resident's trait value $z_r$ through the resident density at equilibrium $n^*$

The video shows the process of mutant invasion and replacement
"""
)

zlist = np.linspace(0, 2, 100)
alpha = 0.4

X, Y = np.meshgrid(zlist, zlist)
inv_fitness3D = invasion_fitness(X, Y, pars=alpha)

st.write("Invasion process video")

st.plotly_chart(
    make_interactive_video(
        0.01, zlist[-1], 50, zlist, invasion_fitness, alpha, [-2, 2])
)


st.write(
    """
Now you can try varying the mutant trait value to see how the fitness landscape change.

Some suggestions for you to think:

- In which case mutants with smaller growth rate value invade?

- Do you see the relateness among the three graphs? 

Hint: Rotate the 3D graph to match with the axes of the first two graph to see if:

The first graph is the vertical slice (gray surface) in the last graph

PIP is the projection of the fitness surface in the last graph, 

"""
)

zm = st.slider("Mutant trait value", 0.0, 2.0, value=0.2, step=0.01)

col1, col2, col3 = st.columns(3)
with col1:
    st.plotly_chart(plot_invasionfitness(
        zm, zlist, invasion_fitness, alpha, [-2, 2]))
with col2:
    st.plotly_chart(plot_PIP(zlist, invasion_fitness, alpha))
with col3:
    st.plotly_chart(plot_3D_invfitness(zlist, inv_fitness3D, zm, (-4, 4)))

st.header("When there is cost in reproduction")

st.write(
    r"""
Now we include some cost in having a high intrinsical growth rate.

The ecological dynamics of the resident is now

$\frac{dn_r}{dt} = n_r(z_r - z_r^\beta - \alpha n_r)$

Do you see that now if the growth rate $z_r$ increases then there is an additional cost $z_r^\beta$.

The value of $\beta$ affect the shape of the cost
"""
)
zlist = np.linspace(0, 1, 100)

col_par1, col_par2 = st.columns(2, gap="large")
with col_par1:
    beta = st.slider(r"Value of $\beta$", 0.1, 2.0, value=1.2, step=0.01)
with col_par2:
    z_val = st.slider("Trait value", 0.0, 1.0, value=0.1, step=0.01)

z_star = (1 / beta) ** (1 / (beta - 1))

ndsol = solve_ivp(
    pop_dynamics2,
    (0, 550),
    [np.random.uniform(0, 0.05)],
    t_eval=np.linspace(0, 550, 200),
    args=((alpha, beta, z_val),),
)

col5, col6 = st.columns(2, gap="large")
with col5:
    if ndsol.y[0, -1] > 0:
        st.write(
            r"The population density reaches $\frac{z_r - z_r^\beta}{\alpha}$ = ", ndsol.y[0, -1])
    else:
        st.write("The population density reaches", 0)
    st.plotly_chart(
        go.Figure(
            data=go.Scatter(x=ndsol.t, y=ndsol.y[0, :], mode="lines"),
            layout=go.Layout(
                xaxis_title="Time", yaxis_title="Population dynamics", yaxis=dict(range=(0, 0.3))
            ),
        ),
    )
with col6:
    st.plotly_chart(
        go.Figure(
            data=[
                go.Scatter(x=zlist, y=zlist, name="Intrinsic growth rate"),
                go.Scatter(x=zlist, y=zlist**beta, name="Cost on mortality"),
            ]
        )
    )

st.write("Invasion process video")
z_start = st.number_input(
    "Enter the start value of z then click play", 1e-5, 1.0, 0.1, step=0.01
)
if z_start - z_start**beta < 0:
    st.write("Population goes extinct")
else:
    if beta > 1:
        z_end = z_star
    elif beta < 1:
        zlist = np.linspace(0, 2, 100)
        z_end = zlist[-1]
    st.plotly_chart(
        make_interactive_video(
            z_start, z_end, 20, zlist, invasion_fitness2, (alpha, beta), [
                -0.2, 0.2]
        )
    )

st.write("Now try yourself with the step by step invasion replacement process to verify the video")
col7, col8, col9 = st.columns(3, gap="large")

with col7:
    zm2 = st.slider("Mutant trait value", 0.0, 1.0, value=0.1, step=0.01)

    st.plotly_chart(plot_invasionfitness(
        zm2, zlist, invasion_fitness2, (alpha, beta), [-0.2, 0.2]))

X, Y = np.meshgrid(zlist, zlist)
inv_fitness3D2 = invasion_fitness2(X, Y, pars=(alpha, beta))

range = (np.min(inv_fitness3D2) - np.mean(inv_fitness3D2) -
         1e-5, np.max(inv_fitness3D2))
with col8:
    st.plotly_chart(plot_PIP(zlist, invasion_fitness2, (alpha, beta)))
with col9:
    st.plotly_chart(plot_3D_invfitness(zlist, inv_fitness3D2, zm, range))

st.header("Assymetric competition")

st.write(r"""
Assymetric competition results in evolutionary branching

Now the intrinsic growth rate is no longer a linear function of the trait z. It follows a Gaussian distribution.

$\frac{dn_r}{dt} = (\rho(z) - \alpha(\delta_z) n_r) n_r$

where $\rho(z) = e^{-(z - z_0)^2}$ is a Gaussian function.


""")
zlist = np.linspace(-3, 3, 100)
inv_fitness3D3 = invasion_fitness3(zlist, zlist, (0, 2.4))
st.plotly_chart(plot_PIP(zlist, invasion_fitness3, (0, 2.4)))