Spaces:
Sleeping
Sleeping
File size: 9,424 Bytes
03f568d 7756f2b 03f568d 7756f2b 74d1813 5d9d8c1 7756f2b 03f568d 2a5583f 03f568d 2a5583f 03f568d 2a5583f 03f568d 7756f2b 03f568d 2a5583f 7756f2b 03f568d 2a5583f 03f568d 7756f2b 03f568d 2a5583f 03f568d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
#!/usr/bin/env python
"""
This script transforms custom dataset, gathered from Internet into
DeepSpeech-ready .csv file
Use "python3 import_ukrainian.py -h" for help
"""
import csv
import os
import subprocess
import unicodedata
from multiprocessing import Pool
import progressbar
import sox
from deepspeech_training.util.downloader import SIMPLE_BAR
from deepspeech_training.util.importers import (
get_counter,
get_imported_samples,
get_importers_parser,
get_validate_label,
print_import_report,
)
from ds_ctcdecoder import Alphabet
import re
FIELDNAMES = ["wav_filename", "wav_filesize", "transcript"]
SAMPLE_RATE = 16000
CHANNELS = 1
MAX_SECS = 10
PARAMS = None
FILTER_OBJ = None
AUDIO_DIR = None
class LabelFilter:
def __init__(self, normalize, alphabet, validate_fun):
self.normalize = normalize
self.alphabet = alphabet
self.validate_fun = validate_fun
def filter(self, label):
if self.normalize:
label = unicodedata.normalize("NFKD", label.strip()).encode(
"ascii", "ignore").decode("ascii", "ignore")
label = self.validate_fun(label)
if self.alphabet and label and not self.alphabet.CanEncode(label):
label = None
return label
def init_worker(params):
global FILTER_OBJ # pylint: disable=global-statement
global AUDIO_DIR # pylint: disable=global-statement
AUDIO_DIR = params.audio_dir if params.audio_dir else os.path.join(
params.tsv_dir, "clips")
validate_label = get_validate_label(params)
alphabet = Alphabet(
params.filter_alphabet) if params.filter_alphabet else None
FILTER_OBJ = LabelFilter(params.normalize, alphabet, validate_label)
def one_sample(sample):
""" Take an audio file, and optionally convert it to 16kHz WAV """
global AUDIO_DIR
source_filename = sample[0]
if not os.path.splitext(source_filename.lower())[1] == ".wav":
source_filename += ".wav"
# Storing wav files next to the mp3 ones - just with a different suffix
output_filename = f"{sample[2]}.wav"
output_filepath = os.path.join(AUDIO_DIR, output_filename)
_maybe_convert_wav(source_filename, output_filepath)
file_size = -1
frames = 0
if os.path.exists(output_filepath):
file_size = os.path.getsize(output_filepath)
if file_size == 0:
frames = 0
else:
frames = int(
subprocess.check_output(
["soxi", "-s", output_filepath], stderr=subprocess.STDOUT
)
)
label = FILTER_OBJ.filter(sample[1])
rows = []
counter = get_counter()
if file_size == -1:
# Excluding samples that failed upon conversion
counter["failed"] += 1
elif label is None:
# Excluding samples that failed on label validation
counter["invalid_label"] += 1
# + 1 added for filtering surname dataset with too short audio files
elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)) + 1:
# Excluding samples that are too short to fit the transcript
counter["too_short"] += 1
elif frames / SAMPLE_RATE > MAX_SECS:
# Excluding very long samples to keep a reasonable batch-size
counter["too_long"] += 1
else:
# This one is good - keep it for the target CSV
rows.append((os.path.split(output_filename)
[-1], file_size, label, sample[2]))
counter["imported_time"] += frames
counter["all"] += 1
counter["total_time"] += frames
return (counter, rows)
def convert_transcript(transcript):
transcript = transcript.replace("'", "’")
# transcript = transcript.replace("-", " ")
return transcript.strip()
def _maybe_convert_set(dataset_dir, audio_dir, filter_obj, space_after_every_character=None, rows=None):
# iterate over all data lists and write converted version near them
speaker_iterator = 1
samples = []
total_file_dict = dict()
for subdir, dirs, files in os.walk(dataset_dir):
for file in files:
# Get audiofile path and transcript for each sentence in tsv
if file.endswith(".data"):
file_path = os.path.join(subdir, file)
file = open(file_path, mode="r")
data = []
file_folder = os.path.join(
os.path.dirname(subdir), "wav")
file_dict = dict()
for row in file.readlines():
if row.isspace():
continue
splitted_row = row.replace("\n", "").replace(
" wav ", ".wav ").split(" ", 1)
if len(splitted_row) != 2:
continue
file_name, transcript = splitted_row
if file_name.endswith(".wav"):
pass
elif file_name.endswith(".mp3"):
pass
elif file_name.find(".") == -1:
file_name += ".wav"
if file_name.startswith("/"):
file_name = file_name[1::]
file_name = os.path.join(dataset_dir, file_name)
file_dict[file_name] = convert_transcript(transcript)
file.close()
for wav_subdir, wav_dirs, wav_files in os.walk(file_folder):
for wav_file in wav_files:
wav_file_path = os.path.join(wav_subdir, wav_file)
if file_dict.get(wav_file_path) is not None:
total_file_dict[wav_file_path] = file_dict[wav_file_path]
for key in total_file_dict.keys():
samples.append((key, total_file_dict[key], speaker_iterator))
speaker_iterator += 1
del(total_file_dict)
if rows is None:
rows = []
counter = get_counter()
num_samples = len(samples)
print("Importing dataset files...")
pool = Pool(initializer=init_worker, initargs=(PARAMS,))
bar = progressbar.ProgressBar(
max_value=num_samples, widgets=SIMPLE_BAR)
for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
counter += processed[0]
rows += processed[1]
bar.update(i)
bar.update(num_samples)
pool.close()
pool.join()
imported_samples = get_imported_samples(counter)
assert counter["all"] == num_samples
assert len(rows) == imported_samples
print_import_report(counter, SAMPLE_RATE, MAX_SECS)
output_csv = os.path.join(os.path.abspath(audio_dir), "train.csv")
print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)
with open(output_csv, "w", encoding="utf-8", newline="") as output_csv_file:
print("Writing CSV file for DeepSpeech.py as: ", output_csv)
writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
writer.writeheader()
bar = progressbar.ProgressBar(
max_value=len(rows), widgets=SIMPLE_BAR)
for filename, file_size, transcript, speaker in bar(rows):
if space_after_every_character:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": " ".join(transcript),
}
)
else:
writer.writerow(
{
"wav_filename": filename,
"wav_filesize": file_size,
"transcript": transcript,
}
)
return rows
def _preprocess_data(tsv_dir, audio_dir, space_after_every_character=False):
set_samples = _maybe_convert_set(
tsv_dir, audio_dir, space_after_every_character)
def _maybe_convert_wav(mp3_filename, wav_filename):
if not os.path.exists(wav_filename):
transformer = sox.Transformer()
transformer.convert(samplerate=SAMPLE_RATE, n_channels=CHANNELS)
try:
transformer.build(mp3_filename, wav_filename)
except Exception as e: # TODO: improve exception handling
pass
def parse_args():
parser = get_importers_parser(
description="Import CommonVoice v2.0 corpora")
parser.add_argument("tsv_dir", help="Directory containing tsv files")
parser.add_argument(
"--audio_dir",
help='Directory containing the audio clips - defaults to "<tsv_dir>/clips"',
)
parser.add_argument(
"--filter_alphabet",
help="Exclude samples with characters not in provided alphabet",
)
parser.add_argument(
"--normalize",
action="store_true",
help="Converts diacritic characters to their base ones",
)
parser.add_argument(
"--space_after_every_character",
action="store_true",
help="To help transcript join by white space",
)
return parser.parse_args()
def main():
audio_dir = PARAMS.audio_dir if PARAMS.audio_dir else os.path.join(
PARAMS.tsv_dir, "clips")
_preprocess_data(PARAMS.tsv_dir, audio_dir,
PARAMS.space_after_every_character)
if __name__ == "__main__":
PARAMS = parse_args()
main()
|