File size: 6,124 Bytes
9b43833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import json
import os

import numpy as np
import torch
from fairseq.data import (
    Dictionary,
    IdDataset,
    ListDataset,
    NestedDictionaryDataset,
    NumelDataset,
    NumSamplesDataset,
    RawLabelDataset,
    RightPadDataset,
    SortDataset,
    data_utils,
    encoders,
)
from fairseq.tasks import LegacyFairseqTask, register_task


@register_task("commonsense_qa")
class CommonsenseQATask(LegacyFairseqTask):
    """Task to finetune RoBERTa for Commonsense QA."""

    @staticmethod
    def add_args(parser):
        """Add task-specific arguments to the parser."""
        parser.add_argument(
            "data", metavar="DIR", help="path to data directory; we load <split>.jsonl"
        )
        parser.add_argument(
            "--init-token",
            type=int,
            default=None,
            help="add token at the beginning of each batch item",
        )
        parser.add_argument("--num-classes", type=int, default=5)

    def __init__(self, args, vocab):
        super().__init__(args)
        self.vocab = vocab
        self.mask = vocab.add_symbol("<mask>")

        self.bpe = encoders.build_bpe(args)

    @classmethod
    def load_dictionary(cls, filename):
        """Load the dictionary from the filename

        Args:
            filename (str): the filename
        """
        dictionary = Dictionary.load(filename)
        dictionary.add_symbol("<mask>")
        return dictionary

    @classmethod
    def setup_task(cls, args, **kwargs):
        assert (
            args.criterion == "sentence_ranking"
        ), "Must set --criterion=sentence_ranking"

        # load data and label dictionaries
        vocab = cls.load_dictionary(os.path.join(args.data, "dict.txt"))
        print("| dictionary: {} types".format(len(vocab)))

        return cls(args, vocab)

    def load_dataset(
        self, split, epoch=1, combine=False, data_path=None, return_only=False, **kwargs
    ):
        """Load a given dataset split.

        Args:
            split (str): name of the split (e.g., train, valid, test)
        """

        def binarize(s, append_bos=False):
            if self.bpe is not None:
                s = self.bpe.encode(s)
            tokens = self.vocab.encode_line(
                s,
                append_eos=True,
                add_if_not_exist=False,
            ).long()
            if append_bos and self.args.init_token is not None:
                tokens = torch.cat([tokens.new([self.args.init_token]), tokens])
            return tokens

        if data_path is None:
            data_path = os.path.join(self.args.data, split + ".jsonl")
        if not os.path.exists(data_path):
            raise FileNotFoundError("Cannot find data: {}".format(data_path))

        src_tokens = [[] for i in range(self.args.num_classes)]
        src_lengths = [[] for i in range(self.args.num_classes)]
        labels = []

        with open(data_path) as h:
            for line in h:
                example = json.loads(line.strip())
                if "answerKey" in example:
                    label = ord(example["answerKey"]) - ord("A")
                    labels.append(label)
                question = example["question"]["stem"]
                assert len(example["question"]["choices"]) == self.args.num_classes
                # format: `<s> Q: Where would I not want a fox? </s> A: hen house </s>`
                question = "Q: " + question
                question_toks = binarize(question, append_bos=True)
                for i, choice in enumerate(example["question"]["choices"]):
                    src = "A: " + choice["text"]
                    src_bin = torch.cat([question_toks, binarize(src)])
                    src_tokens[i].append(src_bin)
                    src_lengths[i].append(len(src_bin))
        assert all(
            len(src_tokens[0]) == len(src_tokens[i])
            for i in range(self.args.num_classes)
        )
        assert len(src_tokens[0]) == len(src_lengths[0])
        assert len(labels) == 0 or len(labels) == len(src_tokens[0])

        for i in range(self.args.num_classes):
            src_lengths[i] = np.array(src_lengths[i])
            src_tokens[i] = ListDataset(src_tokens[i], src_lengths[i])
            src_lengths[i] = ListDataset(src_lengths[i])

        dataset = {
            "id": IdDataset(),
            "nsentences": NumSamplesDataset(),
            "ntokens": NumelDataset(src_tokens[0], reduce=True),
        }

        for i in range(self.args.num_classes):
            dataset.update(
                {
                    "net_input{}".format(i + 1): {
                        "src_tokens": RightPadDataset(
                            src_tokens[i],
                            pad_idx=self.source_dictionary.pad(),
                        ),
                        "src_lengths": src_lengths[i],
                    }
                }
            )

        if len(labels) > 0:
            dataset.update({"target": RawLabelDataset(labels)})

        dataset = NestedDictionaryDataset(
            dataset,
            sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])],
        )

        with data_utils.numpy_seed(self.args.seed):
            dataset = SortDataset(
                dataset,
                # shuffle
                sort_order=[np.random.permutation(len(dataset))],
            )

        print("| Loaded {} with {} samples".format(split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]

    def build_model(self, args):
        from fairseq import models

        model = models.build_model(args, self)

        model.register_classification_head(
            "sentence_classification_head",
            num_classes=1,
        )

        return model

    @property
    def source_dictionary(self):
        return self.vocab

    @property
    def target_dictionary(self):
        return self.vocab