File size: 1,171 Bytes
ba2f5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
"""
import faiss, numpy as np, os

# ###########如果是原始特征要先写save
inp_root = r"E:\codes\py39\dataset\mi\2-co256"
npys = []
for name in sorted(list(os.listdir(inp_root))):
    phone = np.load("%s/%s" % (inp_root, name))
    npys.append(phone)
big_npy = np.concatenate(npys, 0)
print(big_npy.shape)  # (6196072, 192)#fp32#4.43G
np.save("infer/big_src_feature_mi.npy", big_npy)

##################train+add
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
print(big_npy.shape)
index = faiss.index_factory(256, "IVF512,Flat")  # mi
print("training")
index_ivf = faiss.extract_index_ivf(index)  #
index_ivf.nprobe = 9
index.train(big_npy)
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
print("adding")
index.add(big_npy)
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
"""
大小(都是FP32)
big_src_feature 2.95G
    (3098036, 256)
big_emb         4.43G
    (6196072, 192)
big_emb双倍是因为求特征要repeat后再加pitch

"""