File size: 6,787 Bytes
9c040e3
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd4b4a
9c040e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f8c97f
9c040e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd4b4a
9c040e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import time
import cv2
from flask import Flask, request, jsonify, send_file
from flask_ngrok2 import run_with_ngrok
from subprocess import call
from tqdm import tqdm
import numpy as np
from ffmpy import FFmpeg

# !pip install flask flask-ngrok2 pyngrok

app = Flask(__name__)
auth_token = '2XQTtjJqVg4B4ryQVgauTPIGeiK_3JUWVJcMhXwpPxz2sc9KB'
root_dir = '/content/wav2lip-gfpgan'
jobs_dir = os.path.join('/content', 'jobs')


@app.route('/', methods=['GET'])
def index():
    return jsonify({'hello': 'world!'})


# New route to serve files from /content/input
@app.route('/job/<job_id>/<filename>', methods=['GET'])
def download_file(job_id, filename):
    try:
        file_path = os.path.join(jobs_dir, job_id, filename)
        print(file_path)
        return send_file(file_path, as_attachment=True)
    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/wav2lip', methods=['POST'])
def wav2lip():
    try:
        # Get uploaded files
        video_file = request.files['video']
        audio_file = request.files['audio']
        job_id = str(int(time.time()))
        job_path = os.path.join(jobs_dir, job_id)
        os.makedirs(job_path, exist_ok=True)

        # Save the files to a temporary directory
        video_path = os.path.join(job_path, video_file.filename)
        audio_path = os.path.join(job_path, audio_file.filename)
        video_file.save(video_path)
        audio_file.save(audio_path)

        wav2lip_mp4 = os.path.join(job_path, 'wav2lip.mp4')
        call_wav2lip(video_path, audio_path, wav2lip_mp4)

        output_filename = 'output.mp4'
        output_mp4 = os.path.join(job_path, output_filename)
        call_gfpgan(wav2lip_mp4, audio_path, output_mp4)

        return jsonify({'url': f'/job/{job_id}/{output_filename}'})

    except Exception as e:
        return jsonify({'error': str(e)}), 500


def call_wav2lip(video_path, audio_path, output_path):
    checkpoint_path = os.path.join(root_dir, 'wav2lip/checkpoints/wav2lip.pth')
    assert os.path.isfile(video_path), f'Video path {video_path} not exist.'
    assert os.path.isfile(audio_path), f'Audio path {audio_path} not exist.'
    assert os.path.isfile(checkpoint_path), f'Checkpoint file {checkpoint_path} not exist.'

    # python inference.py \
    # --checkpoint_path checkpoints/wav2lip.pth \
    # --face {inputVideoPath} \
    # --audio {inputAudioPath} \
    # --outfile {lipSyncedOutputPath}
    cmd = [
        "python",
        "wav2lip/inference.py",
        "--checkpoint_path", checkpoint_path,
        # "--segmentation_path", "checkpoints/face_segmentation.pth",
        "--face", video_path,
        "--audio", audio_path,
        "--outfile", output_path,
    ]

    call(cmd)
    return output_path


def _get_frames(video_path):
    folder_path = os.path.dirname(video_path)
    origin_frames_folder = os.path.join(folder_path, 'frames')
    os.makedirs(origin_frames_folder, exist_ok=True)

    # get frames pics
    vidcap = cv2.VideoCapture(video_path)
    numberOfFrames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    print("FPS: ", fps, "Frames: ", numberOfFrames)

    for frameNumber in tqdm(range(numberOfFrames)):
        _, image = vidcap.read()
        cv2.imwrite(os.path.join(origin_frames_folder, str(frameNumber).zfill(4) + '.jpg'), image)
    return origin_frames_folder


def call_gfpgan(wav2lip_mp4, audio_path, output_mp4):
    assert os.path.isfile(wav2lip_mp4), f'Video path {wav2lip_mp4} not exist.'
    origin_frames_folder = _get_frames(wav2lip_mp4)
    folder_path = os.path.dirname(wav2lip_mp4)

    # python inference_gfpgan.py
    # -i "$unProcessedFramesFolderPath"
    # -o "$outputPath"
    # -v 1.3
    # -s 2
    # --only_center_face
    # --bg_upsampler None
    cmd = [
        "python",
        "gfpgan/inference_gfpgan.py",
        "-i", origin_frames_folder,
        "-o", folder_path,
        "-v", 1.3,
        "-s", 2,
        "--only_center_face",
        "--bg_upsampler", None
    ]
    call(cmd)

    restoredFramesPath = os.path.join(folder_path, 'restored_imgs')
    os.makedirs(restoredFramesPath, exist_ok=True)
    folder_path = folder_path
    dir_list = os.listdir(restoredFramesPath)
    dir_list.sort()
    batch = 0
    batchSize = 300
    for i in tqdm(range(0, len(dir_list), batchSize)):
        img_array = []
        start, end = i, i + batchSize
        print("processing ", start, end)
        for filename in tqdm(dir_list[start:end]):
            filename = restoredFramesPath + filename;
            img = cv2.imread(filename)
            if img is None:
                continue
            height, width, layers = img.shape
            size = (width, height)
            img_array.append(img)

        fourcc = cv2.VideoWriter_fourcc(*'X264')
        filename = 'batch_' + str(batch).zfill(4) + '.mp4'
        out = cv2.VideoWriter(os.path.join(folder_path, filename),
                              fourcc, 30, size)
        batch = batch + 1

        for i in range(len(img_array)):
            out.write(img_array[i])
        out.release()

    concatTextFilePath = os.path.join(folder_path, "concat.txt")

    concatTextFile = open(concatTextFilePath, "w")
    for ips in range(batch):
        concatTextFile.write("file batch_" + str(ips).zfill(4) + ".mp4\n")
    concatTextFile.close()

    concatedVideoOutputPath = os.path.join(folder_path, "concated_output.mp4")
    ff = FFmpeg(
        inputs={concatTextFilePath: None},
        outputs={concatedVideoOutputPath: '-y -c copy'}
    )
    # !ffmpeg -y -f concat -i {concatTextFilePath} -c copy {concatedVideoOutputPath}
    ff.run()

    ff = FFmpeg(
        inputs={concatedVideoOutputPath: None, audio_path: None},
        outputs={output_mp4: '-y -map 0 -map 1:a -c:v libx264 -c:a aac -shortest'}
    )
    # !ffmpeg -y -i {concatedVideoOutputPath} -i {inputAudioPath} -map 0 -map 1:a -c:v copy -shortest {finalProcessedOuputVideo}
    ff.run()

    # from google.colab import files
    # files.download(finalProcessedOuputVideo)


if __name__ == '__main__':
    run_with_ngrok(app, auth_token=auth_token)
    app.run()


def test():
    # request
    import requests
    ngrok_url = f"http://74c0-34-87-172-60.ngrok-free.app"
    url = f"{ngrok_url}/wav2lip"
    print(url)
    video_path = '/Users/taoluo/Downloads/oIy5B4-vHVw.4.6588496370531551262.0.jpg'
    audio_path = '/Users/taoluo/Downloads/test_audio.mp3'
    files = {'video': ('video.jpg', open(video_path, 'rb')), 'audio': ('audio.mp3', open(audio_path, 'rb'))}
    headers = {'ngrok-skip-browser-warning': 'true'}
    response = requests.post(url, files=files, headers=headers)
    # Print the response
    print(response.json())
    data = response.json()
    print(ngrok_url + data['url'])