Spaces:
Sleeping
Sleeping
File size: 10,509 Bytes
79b94f8 2b58524 79b94f8 2b58524 79b94f8 2b58524 79b94f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# For downloading from youtube and transcribing audio
from pytube import YouTube
from moviepy.editor import *
from pydub import AudioSegment
from pydub.utils import make_chunks
import pydub
from pathlib import Path
import subprocess
# For getting text from PDF
from zipfile import ZipFile
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfpage import PDFPage
from io import StringIO
# For transcription
import openai, whisper, torch
from faster_whisper import WhisperModel
import tiktoken
from nltk import tokenize
# For other stuff
import os, re
import time, math
# USEFUL CONSTANTS
# Duration is set to 6 minutes = 360 seconds = 360000 milliseconds
DURATION = 360000
# Maximum audio file size is 18MB
MAX_FILE_SIZE_BYTES = 18000000
# The model to use for transcription
WHISPER_MODEL = "tiny"
MODEL_SIZE = "base"
class DownloadAudio:
"""Downloads the audio from a youtube video and saves it to multiple .wav files in the specified folder"""
def __init__(self, link) -> None:
self.link = link
self.yt = YouTube(self.link)
self.YOUTUBE_VIDEO_ID = link.split("=")[1]
self.WAV_FILE_NAME = f"{self.YOUTUBE_VIDEO_ID}.wav"
def get_yt_title(self) -> str:
"""Returns the title of the youtube video"""
while True:
try:
title = self.yt.title
return title
except:
print("Failed to get name. Retrying...")
time.sleep(1)
self.yt = YouTube(self.link)
continue
def download(self, pathname:str) -> str:
"""
Download the audio from the youtube video and saves it to multiple .wav files
in the specified folder. Returns a list of the paths to the .wav files.
"""
# Check if the folder for the VIDEO_ID exists
if not os.path.exists(pathname):
os.mkdir(pathname)
FINAL_WAV_PATH = f"{pathname}/{self.WAV_FILE_NAME}"
if not os.path.exists(FINAL_WAV_PATH):
print("\n\n\n DOWNLOADING AUDIO \n\n\n")
current_dir = os.getcwd()
print(current_dir)
executable_path = os.path.join(current_dir, "exec/yt-dlp_linux")
# Download the video as an audio file using youtube-dl
result = subprocess.run([executable_path, "-x", "--audio-format", "wav", "-o", FINAL_WAV_PATH, self.link])
if result.returncode != 0:
print("Failed to download audio. Retrying...")
return "FAILED"
# Load the input .wav file
audio = AudioSegment.from_wav(FINAL_WAV_PATH)
# Get the duration of the input file in milliseconds
total_byte_size = os.path.getsize(FINAL_WAV_PATH)
# If the total duration is less than the duration of each segment,
# then just return the original file
if total_byte_size < MAX_FILE_SIZE_BYTES:
return FINAL_WAV_PATH
# Get the size of the wav file
channels = audio.channels
sample_width = audio.sample_width
duration_in_sec = math.ceil(len(audio) / 1000)
sample_rate = audio.frame_rate
bit_rate = sample_width * 8
wav_file_size = (sample_rate * bit_rate * channels * duration_in_sec) / 8
# Get the length of each chunk in milliseconds and make the chunks
chunk_length_in_sec = math.ceil((duration_in_sec * MAX_FILE_SIZE_BYTES ) / wav_file_size) #in sec
chunk_length_ms = chunk_length_in_sec * 1000
chunks = make_chunks(audio, chunk_length_ms)
# Export all of the individual chunks as wav files
chunk_names = []
for i, chunk in enumerate(chunks):
chunk_name = f"{self.YOUTUBE_VIDEO_ID}_{i}.wav"
output_chunk_path = f"{pathname}/{chunk_name}"
chunk_names.append(output_chunk_path)
chunk.export(f"{output_chunk_path}", format="wav")
return FINAL_WAV_PATH
class VideoTranscription:
"""Performs transcription on a PDF or a link to a youtube video"""
def __init__(self, datalink) -> None:
self.datalink = datalink
self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
self.model = WhisperModel(WHISPER_MODEL, device="cpu", compute_type="int8")
openai.api_key = os.environ.get("OPENAI_API_KEY")
def transcribe(self) -> dict:
"""Returns the transcription of the PDF or youtube video as a string"""
start_time = time.time()
if self.datalink.startswith("http"):
transcript = self.get_text_from_link()
else:
transcript = self.get_text_from_pdf()
end_time = time.time()
print(f"transcription took {end_time - start_time} seconds")
return transcript
def get_text_from_link(self) -> dict:
# Get the names of the stored wav files
YOUTUBE_VIDEO_ID = self.datalink.split("=")[1]
FOLDER_NAME = f"./tests/{YOUTUBE_VIDEO_ID}"
# Get the audio file
audio_file = DownloadAudio(self.datalink)
# Get the names of the stored wav files
original_file_name = audio_file.download(FOLDER_NAME)
print(original_file_name)
# Get the transcription of each audio chunk
text_transcriptions = ""
# for file_name in file_names:
# Get the transcription
chunk_segments, _ = self.model.transcribe(original_file_name, beam_size=5)
for chunk_segment in chunk_segments:
text_transcriptions += chunk_segment.text.replace("$", "\$")
# Tokenize each sentence of the transcription.
sentences = tokenize.sent_tokenize(text_transcriptions)
segments = []
for i, sentence in enumerate(sentences):
segment = {
"id":i,
"text":sentence,
"tokens":self.encoding.encode(sentence)
}
segments.append(segment)
final_transcription = {
"title": audio_file.get_yt_title(),
"text": text_transcriptions,
"segments": segments
}
return final_transcription
class AudioTranscription:
"""Performs transcription on a MP3 file"""
def __init__(self, audio_file) -> None:
self.file = audio_file
self.title = self.file.name
self.folder_name = f"./tests/{self.title}".replace(' ', '')
self.folder_name = self.folder_name[:self.folder_name.rindex('.')]
self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
self.model = WhisperModel(WHISPER_MODEL, device="cpu", compute_type="int8")
openai.api_key = os.environ.get("OPENAI_API_KEY")
def get_redacted_name(self):
return self.folder_name
def transcribe(self) -> dict:
"""Returns the transcription of the MP3 audio as a string"""
start_time = time.time()
if not os.path.exists(self.folder_name):
os.mkdir(self.folder_name)
if self.title.endswith('wav'):
audio = pydub.AudioSegment.from_wav(self.file)
file_type = 'wav'
elif self.title.endswith('mp3'):
audio = pydub.AudioSegment.from_mp3(self.file)
file_type = 'mp3'
save_path = Path(self.folder_name) / self.file.name
audio.export(save_path, format=file_type)
final_wav_path = save_path
if file_type == 'mp3':
sound = AudioSegment.from_mp3(save_path)
final_wav_path = self.folder_name + "/" + self.title[:-4]+'.wav'
sound.export(final_wav_path, format="wav")
chunk_segments, info = self.model.transcribe(final_wav_path, beam_size=5)
text_transcriptions = ""
for chunk_segment in chunk_segments:
text_transcriptions += chunk_segment.text.replace("$", "\$")
# Tokenize each sentence of the transcription.
sentences = tokenize.sent_tokenize(text_transcriptions)
segments = []
for i, sentence in enumerate(sentences):
segment = {
"id":i,
"text":sentence,
"tokens":self.encoding.encode(sentence)
}
segments.append(segment)
final_transcription = {
"title": self.title,
"text": text_transcriptions,
"segments": segments
}
end_time = time.time()
print(f"transcription took {end_time - start_time} seconds")
return final_transcription
def convert_pdf_to_txt_pages(path):
texts = []
rsrcmgr = PDFResourceManager()
retstr = StringIO()
laparams = LAParams()
device = TextConverter(rsrcmgr, retstr, laparams=laparams)
interpreter = PDFPageInterpreter(rsrcmgr, device)
size = 0
c = 0
file_pages = PDFPage.get_pages(path)
nbPages = len(list(file_pages))
for page in PDFPage.get_pages(path):
interpreter.process_page(page)
t = retstr.getvalue()
if c == 0:
texts.append(t)
else:
texts.append(t[size:])
c = c + 1
size = len(t)
device.close()
retstr.close()
return texts, nbPages
class PDFTranscription:
def __init__(self, pdf_file):
self.file = pdf_file
self.title = pdf_file.name
self.folder_name = f"./tests/{self.title}".replace(' ', '')
self.folder_name = self.folder_name[:self.folder_name.rindex('.')]
self.encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
def get_redacted_name(self):
return self.folder_name
def transcribe(self):
text, nbpages = convert_pdf_to_txt_pages(self.file)
pdf_transcription = ''.join(text)
sentences = tokenize.sent_tokenize(pdf_transcription)
segments = []
for i, sentence in enumerate(sentences):
segment = {
"id":i,
"text":sentence,
"tokens":self.encoding.encode(sentence)
}
segments.append(segment)
final_transcription = {
"title":self.title,
"text":pdf_transcription,
"segments":segments
}
return final_transcription
|