File size: 12,357 Bytes
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abcb58
 
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abcb58
79b94f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abcb58
79b94f8
2abcb58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b94f8
2abcb58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b94f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Streamlit classes
import streamlit as st
from streamlit_agraph import agraph, Node, Edge, Config
from streamlit_chat import message

# Data manipulation and embeddings
import pandas as pd
import numpy as np
import openai
from openai.embeddings_utils import distances_from_embeddings
import whisper

# Exec tasks
import os, json
import math
import re

# Custom classes 
from transcription import *
from keywords import Keywords
from summary import TextSummarizer
from takeaways import KeyTakeaways
from mindmap import MindMap
import models as md


REGEXP_YOUTUBE_URL = "^(https?\:\/\/)?((www\.)?youtube\.com|youtu\.be)\/.+$"

model = whisper.load_model('base')

output = ''
data = []
data_transcription = {"title":"", "text":""}
embeddings = []
text_chunks_lib = dict()
user_input = None

tldr = ""
summary = ""
takeaways = []

folder_name = "./tests"
input_accepted = False
is_completed_analysis = False
if not os.path.exists(folder_name):
    os.mkdir(folder_name)

user_secret = os.getenv("OPENAI_API_KEY")

# Define the purpose of the application
st.header('Almithal')
st.subheader('Almithal is a comprehensive video and PDF study buddy.')
st.write('It provides a summary, transcription, key insights, a mind map and a Q&A feature where you can actually "talk" to the datasource.')

bar = st.progress(0)

# =========== SIDEBAR FOR GENERATION ===========
with st.sidebar:
    youtube_link = st.text_input(label = "Type in your Youtube link", placeholder = "", key="url")
    st.markdown("OR")
    pdf_file = st.file_uploader("Upload your PDF", type="pdf")
    st.markdown("OR")
    audio_file = st.file_uploader("Upload your MP3 audio file", type=["wav", "mp3"])
    
    gen_keywords = st.radio(
        "Generate keywords from text?",
        ('Yes', 'No')
    )

    gen_summary = st.radio(
        "Generate summary from text? (recommended for label matching below, but will take longer)",
        ('Yes', 'No')
    )
    
    if st.button("Start Analysis"):
        
        # Check if it is a valid youtube URL
        if re.search(REGEXP_YOUTUBE_URL, youtube_link):
            vte = VideoTranscription(youtube_link)
            YOUTUBE_VIDEO_ID = youtube_link.split("=")[1]
            folder_name = f"./tests/{YOUTUBE_VIDEO_ID}"
            if not os.path.exists(folder_name):
                os.mkdir(folder_name)
            
            with st.spinner('Running process...'):
                data_transcription = vte.transcribe()                    
                segments = data_transcription['segments']
            
            with open(f"{folder_name}/data.json", "w") as f:
                json.dump(data_transcription, f, indent=4)
                 
        # PDF Transcription 
        elif pdf_file is not None:
            pte = PDFTranscription(pdf_file)
            folder_name = pte.get_redacted_name()
            if not os.path.exists(folder_name):
                os.mkdir(folder_name)
            
            with st.spinner('Running process...'):
                data_transcription = pte.transcribe()
                segments = data_transcription['segments']
        
        # Audio transcription
        elif audio_file is not None:
            ate = AudioTranscription(audio_file)
            folder_name = ate.get_redacted_name()
            if not os.path.exists(f""):
                os.mkdir(folder_name)
            
            with st.spinner('Running process...'):
                data_transcription = ate.transcribe()
                segments = data_transcription['segments']
            
            with open(f"{folder_name}/data.json", "w") as f:
                json.dump(data_transcription, f, indent=4)
                
        else:
            st.error("Please type in your youtube link or upload the PDF")  
            st.experimental_rerun()
            
        # Generate embeddings
        if not os.path.exists(f"{folder_name}/word_embeddings.csv"):
            for i, segment in enumerate(segments):
                bar.progress(max(math.ceil((i/len(segments) * 50)), 1))
                response = openai.Embedding.create(
                    input= segment["text"].strip(),
                    model="text-embedding-ada-002"
                )
                embeddings = response['data'][0]['embedding']
                meta = {
                    "text": segment["text"].strip(),
                    "embedding": embeddings
                }
                data.append(meta)
            
            pd.DataFrame(data).to_csv(f'{folder_name}/word_embeddings.csv') 
        else:   
            data = pd.read_csv(f'{folder_name}/word_embeddings.csv')
            embeddings = data["embedding"]
        
        bar.progress(75)

        text_df = pd.DataFrame.from_dict({"title": [data_transcription["title"]], "text":[data_transcription["text"]]})
        input_accepted = True
        
        with st.spinner('Breaking up the text and doing analysis...'):
            # For each body of text, create text chunks of a certain token size required for the transformer
            title_entry = text_df['title'][0]
            print(title_entry)
            for i in range(0, len(text_df)):
                nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024)
                # For each chunk of sentences (within the token max)
                text_chunks = []
                for n in range(0, len(nested_sentences)):
                    tc = " ".join(map(str, nested_sentences[n]))
                    text_chunks.append(tc)
                
                text_chunks_lib[title_entry] = text_chunks    
            
            # Generate key takeaways 
            key_engine = Keywords(title_entry)
            keywords = key_engine.get_keywords(text_chunks_lib)
        
        # Generate the summary
        if gen_summary == 'Yes':
            se = TextSummarizer(title_entry)
            text_transcription = data_transcription['text']
            with st.spinner("Generating summary and TLDR..."):
                summary = se.generate_full_summary(text_chunks_lib)
                summary_list = summary.split("\n\n")
                tldr = se.generate_short_summary(summary_list)
        
        # Generate key takeaways
        kt = KeyTakeaways()
        with st.spinner("Generating key takeaways ... "):
            takeaways = kt.generate_key_takeaways(text_chunks_lib)
                
        is_completed_analysis = True
        bar.progress(100)

if is_completed_analysis:
    st.header("Key Takeaways")
    st.write("Here are some of the key takeaways from the data:")
    for takeaway in takeaways:
        st.markdown(f"- {takeaway}")


tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(["Introduction", "Summary", "Transcription", "Mind Map", "Keywords", "Q&A"])

# =========== INTRODUCTION ===========
with tab1:
    st.markdown("## How do I use this?")
    st.markdown("Do one of the following")
    st.markdown('* Type in your youtube URL that you want worked on')
    st.markdown('* Place the PDF file that you want worked on')
    st.markdown('* Place the audio file that you want worked on')
    st.markdown("**Once the file / url has finished saving, a 'Start Analysis' button will appear. Click on this button to begin the note generation**")
    st.warning("NOTE: This is just a demo product in alpha testing. Any and all bugs will soon be fixed")
    st.warning("After the note taking is done, you will see multiple tabs for more information")

# =========== SUMMARIZATION ===========
with tab2: 
    if is_completed_analysis:
        st.header("TL;DR")
        for point in tldr:
            st.markdown(f"- {point}")
        st.header("Summary")
        st.write(summary)
    else:
        st.warning("Please wait for the analysis to finish")

# =========== TRANSCRIPTION ===========
with tab3:
    st.header("Transcription")
    if is_completed_analysis:
        with st.spinner("Generating transcript ..."):
            st.write("")
            for text in text_chunks_lib[title_entry]:
                st.write(text)
    else:
        st.warning("Please wait for the analysis to finish")

# =========== MIND MAP ===========
with tab4:
    st.header("Mind Map")
    if is_completed_analysis:
        mindmap = MindMap()
        with st.spinner("Generating mind map..."):
            mindmap.generate_graph(text_chunks_lib)
    else:
        st.warning("Please wait for the analysis to finish")

# =========== KEYWORDS ===========
with tab5:
    st.header("Keywords:")
    if is_completed_analysis and gen_keywords:
        for i, keyword in enumerate(keywords):
            st.markdown(f"{i+1}. {keyword}")
    else:
        st.warning("Please wait for the analysis to finish")

# =========== QUERY BOT ===========
with tab6:
    if is_completed_analysis:
        if 'generated' not in st.session_state:
            st.session_state['generated'] = []

        if 'past' not in st.session_state:
            st.session_state['past'] = []

        def get_text():
            st.header("Ask me something about the video:")
            input_text = st.text_input("You: ", key="prompt")
            return input_text


        def get_embedding_text(prompt):
            response = openai.Embedding.create(
                input= prompt.strip(),
                model="text-embedding-ada-002"
            )
            q_embedding = response['data'][0]['embedding']
            print("the folder name at got here 1.5 is ", folder_name)
            # df = pd.read_csv(f'{folder_name}/word_embeddings.csv', index_col=0)
            data['embedding'] = data['embedding'].apply(eval).apply(np.array)

            data['distances'] = distances_from_embeddings(q_embedding, data['embedding'].values, distance_metric='cosine')
            returns = []
            
            # Sort by distance with 2 hints
            for i, row in data.sort_values('distances', ascending=True).head(4).iterrows():
                # Else add it to the text that is being returned
                returns.append(row["text"])

            # Return the context
            return "\n\n###\n\n".join(returns)

        def generate_response(prompt):
            one_shot_prompt = '''
                I am YoutubeGPT, a highly intelligent question answering bot.
                If you ask me a question that is rooted in truth, I will give you the answer.
                Q: What is human life expectancy in the United States?
                A: Human life expectancy in the United States is 78 years.
                Q: '''+prompt+'''
                A: 
            '''
            completions = openai.Completion.create(
                engine = "text-davinci-003",
                prompt = one_shot_prompt,
                max_tokens = 1024,
                n = 1,
                stop=["Q:"],
                temperature=0.5,
            )
            message = completions.choices[0].text
            return message
        
        if is_completed_analysis:
            user_input = get_text()
            print("user input is ", user_input)
            print("the folder name at got here 0.5 is ", folder_name)
        else:
            user_input = None
        
        if 'messages' not in st.session_state:
            st.session_state['messages'] = get_initial_message()
        
        if user_input:
            print("got here 1")
            print("the folder name at got here 1.5 is ", folder_name)
            text_embedding = get_embedding_text(user_input)
            print("the folder name at got here 1.5 is ", folder_name)
            print("got here 2")
            title = data_transcription['title']
            string_title = "\n\n###\n\n".join(title)
            user_input_embedding = 'Using this context: "'+string_title+'. '+text_embedding+'", answer the following question. \n'+user_input
            print("got here 3")
            output = generate_response(user_input_embedding)
            st.session_state.past.append(user_input)
            st.session_state.generated.append(output)
            
        if st.session_state['generated']:
            for i in range(len(st.session_state['generated'])-1, -1, -1):
                message(st.session_state["generated"][i], key=str(i))
                message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')


# st.header("What else")