File size: 19,996 Bytes
a4b70d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
from __future__ import annotations
import time
import json
import random
import requests
import asyncio
from urllib.parse import quote, quote_plus
from typing import Optional
from aiohttp import ClientSession, ClientTimeout
from .helper import filter_none, format_media_prompt
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..typing import AsyncResult, Messages, MediaListType
from ..image import is_data_an_audio
from ..errors import MissingAuthError
from ..requests.raise_for_status import raise_for_status
from ..requests.aiohttp import get_connector
from ..image import use_aspect_ratio
from ..providers.response import ImageResponse, Reasoning, TitleGeneration, SuggestedFollowups
from ..tools.media import render_messages
from ..config import STATIC_URL
from .template.OpenaiTemplate import read_response
from .. import debug
DEFAULT_HEADERS = {
"accept": "*/*",
'accept-language': 'en-US,en;q=0.9',
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"referer": "https://pollinations.ai/",
"origin": "https://pollinations.ai",
}
FOLLOWUPS_TOOLS = [{
"type": "function",
"function": {
"name": "options",
"description": "Provides options for the conversation",
"parameters": {
"properties": {
"title": {
"title": "Conversation title. Prefixed with one or more emojies",
"type": "string"
},
"followups": {
"items": {
"type": "string"
},
"title": "Suggested 4 Followups (only user messages)",
"type": "array"
}
},
"title": "Conversation",
"type": "object"
}
}
}]
FOLLOWUPS_DEVELOPER_MESSAGE = [{
"role": "developer",
"content": "Provide conversation options.",
}]
class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
label = "Pollinations AI 🌸"
url = "https://pollinations.ai"
login_url = "https://auth.pollinations.ai"
active_by_default = True
working = True
supports_system_message = True
supports_message_history = True
# API endpoints
text_api_endpoint = "https://text.pollinations.ai"
openai_endpoint = "https://text.pollinations.ai/openai"
image_api_endpoint = "https://image.pollinations.ai/"
# Models configuration
default_model = "openai"
fallback_model = "deepseek"
default_image_model = "flux"
default_vision_model = default_model
default_audio_model = "openai-audio"
default_voice = "alloy"
text_models = [default_model, "evil"]
image_models = [default_image_model, "turbo", "kontext"]
audio_models = {default_audio_model: []}
vision_models = [default_vision_model]
_models_loaded = False
model_aliases = {
"llama-4-scout": "llamascout",
"deepseek-r1": "deepseek-reasoning",
"sdxl-turbo": "turbo",
"gpt-image": "gptimage",
"flux-dev": "flux",
"flux-schnell": "flux",
"flux-pro": "flux",
"flux": "flux",
"flux-kontext": "kontext",
}
@classmethod
def get_models(cls, **kwargs):
def get_alias(model: dict) -> str:
alias = model.get("name")
if (model.get("aliases")):
alias = model.get("aliases")[0]
return alias.replace("-instruct", "").replace("qwen-", "qwen").replace("qwen", "qwen-")
if not cls._models_loaded:
try:
# Update of image models
image_response = requests.get("https://image.pollinations.ai/models")
if image_response.ok:
new_image_models = image_response.json()
else:
new_image_models = []
# Combine image models without duplicates
image_models = cls.image_models.copy() # Start with default model
# Add extra image models if not already in the list
for model in new_image_models:
if model not in image_models:
image_models.append(model)
cls.image_models = image_models
text_response = requests.get("https://g4f.dev/api/pollinations.ai/models")
if not text_response.ok:
text_response = requests.get("https://text.pollinations.ai/models")
text_response.raise_for_status()
models = text_response.json()
# Purpose of audio models
cls.audio_models = {
model.get("name"): model.get("voices")
for model in models
if "output_modalities" in model and "audio" in model["output_modalities"]
}
for alias, model in cls.model_aliases.items():
if model in cls.audio_models and alias not in cls.audio_models:
cls.audio_models.update({alias: {}})
cls.vision_models.extend([
get_alias(model)
for model in models
if model.get("vision") and get_alias(model) not in cls.vision_models
])
for model in models:
alias = get_alias(model)
if alias not in cls.text_models:
cls.text_models.append(alias)
if alias != model.get("name"):
cls.model_aliases[alias] = model.get("name")
elif model.get("name") not in cls.text_models:
cls.text_models.append(model.get("name"))
cls.live += 1
except Exception as e:
# Save default models in case of an error
if not cls.text_models:
cls.text_models = [cls.default_model]
if not cls.image_models:
cls.image_models = [cls.default_image_model]
debug.error(f"Failed to fetch models: {e}")
finally:
cls._models_loaded = True
# Return unique models across all categories
all_models = cls.text_models.copy()
all_models.extend(cls.image_models)
all_models.extend(cls.audio_models.keys())
if cls.default_audio_model in cls.audio_models:
all_models.extend(cls.audio_models[cls.default_audio_model])
return list(dict.fromkeys(all_models))
@classmethod
def get_grouped_models(cls) -> dict[str, list[str]]:
cls.get_models()
return [
{"group": "Text Generation", "models": cls.text_models},
{"group": "Image Generation", "models": cls.image_models},
{"group": "Audio Generation", "models": list(cls.audio_models.keys())},
{"group": "Audio Voices", "models": cls.audio_models.get(cls.default_audio_model, [])},
]
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = True,
proxy: str = None,
cache: bool = None,
referrer: str = STATIC_URL,
api_key: str = None,
extra_body: dict = None,
# Image generation parameters
prompt: str = None,
aspect_ratio: str = None,
width: int = None,
height: int = None,
seed: Optional[int] = None,
nologo: bool = True,
private: bool = False,
enhance: bool = None,
safe: bool = False,
transparent: bool = False,
n: int = 1,
# Text generation parameters
media: MediaListType = None,
temperature: float = None,
presence_penalty: float = None,
top_p: float = None,
frequency_penalty: float = None,
response_format: Optional[dict] = None,
extra_parameters: list[str] = ["tools", "parallel_tool_calls", "tool_choice", "reasoning_effort", "logit_bias", "voice", "modalities", "audio"],
**kwargs
) -> AsyncResult:
if cache is None:
cache = kwargs.get("action") == "next"
if extra_body is None:
extra_body = {}
if not model:
has_audio = "audio" in kwargs or "audio" in kwargs.get("modalities", [])
if not has_audio and media is not None:
for media_data, filename in media:
if is_data_an_audio(media_data, filename):
has_audio = True
break
model = cls.default_audio_model if has_audio else model
elif cls._models_loaded or cls.get_models():
if model in cls.model_aliases:
model = cls.model_aliases[model]
debug.log(f"Using model: {model}")
if model in cls.image_models:
async for chunk in cls._generate_image(
model="gptimage" if model == "transparent" else model,
prompt=format_media_prompt(messages, prompt),
media=media,
proxy=proxy,
aspect_ratio=aspect_ratio,
width=width,
height=height,
seed=seed,
cache=cache,
nologo=nologo,
private=private,
enhance=enhance,
safe=safe,
transparent=transparent or model == "transparent",
n=n,
referrer=referrer,
api_key=api_key
):
yield chunk
else:
if prompt is not None and len(messages) == 1:
messages = [{
"role": "user",
"content": prompt
}]
if model and model in cls.audio_models[cls.default_audio_model]:
kwargs["audio"] = {
"voice": model,
}
model = cls.default_audio_model
async for result in cls._generate_text(
model=model,
messages=messages,
media=media,
proxy=proxy,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
response_format=response_format,
seed=seed,
cache=cache,
stream=stream,
extra_parameters=extra_parameters,
referrer=referrer,
api_key=api_key,
extra_body=extra_body,
**kwargs
):
yield result
@classmethod
async def _generate_image(
cls,
model: str,
prompt: str,
media: MediaListType,
proxy: str,
aspect_ratio: str,
width: int,
height: int,
seed: Optional[int],
cache: bool,
nologo: bool,
private: bool,
enhance: bool,
safe: bool,
transparent: bool,
n: int,
referrer: str,
api_key: str,
timeout: int = 120
) -> AsyncResult:
if enhance is None:
enhance = True if model == "flux" else False
params = {
"model": model,
"nologo": str(nologo).lower(),
"private": str(private).lower(),
"enhance": str(enhance).lower(),
"safe": str(safe).lower(),
"referrer": referrer
}
if transparent:
params["transparent"] = "true"
image = [data for data, _ in media if isinstance(data, str) and data.startswith("http")] if media else []
if image:
params["image"] = ",".join(image)
if model != "gptimage":
params = use_aspect_ratio({
"width": width,
"height": height,
**params
}, "1:1" if aspect_ratio is None else aspect_ratio)
query = "&".join(f"{k}={quote(str(v))}" for k, v in params.items() if v is not None)
encoded_prompt = prompt.strip(". \n")
if model == "gptimage" and aspect_ratio is not None:
encoded_prompt = f"{encoded_prompt} aspect-ratio: {aspect_ratio}"
encoded_prompt = quote_plus(encoded_prompt)[:4096-len(cls.image_api_endpoint)-len(query)-8].rstrip("%")
url = f"{cls.image_api_endpoint}prompt/{encoded_prompt}?{query}"
def get_url_with_seed(i: int, seed: Optional[int] = None):
if model == "gptimage":
return url
if i == 0:
if not cache and seed is None:
seed = random.randint(0, 2**32)
else:
seed = random.randint(0, 2**32)
return f"{url}&seed={seed}" if seed else url
headers = {"referer": referrer}
if api_key:
headers["authorization"] = f"Bearer {api_key}"
async with ClientSession(
headers=DEFAULT_HEADERS,
connector=get_connector(proxy=proxy),
timeout=ClientTimeout(timeout)
) as session:
responses = set()
yield Reasoning(label=f"Generating {n} {'image' if n == 1 else 'images'}")
finished = 0
start = time.time()
async def get_image(responses: set, i: int, seed: Optional[int] = None):
try:
async with session.get(get_url_with_seed(i, seed), allow_redirects=False, headers=headers) as response:
await raise_for_status(response)
except Exception as e:
responses.add(e)
debug.error(f"Error fetching image: {e}")
responses.add(ImageResponse(str(response.url), prompt, {"headers": headers}))
tasks: list[asyncio.Task] = []
for i in range(int(n)):
tasks.append(asyncio.create_task(get_image(responses, i, seed)))
while finished < n or len(responses) > 0:
while len(responses) > 0:
item = responses.pop()
if isinstance(item, Exception):
if finished < 2:
yield Reasoning(status="")
for task in tasks:
task.cancel()
if cls.login_url in str(item):
raise MissingAuthError(item)
raise item
else:
finished += 1
yield Reasoning(label=f"Image {finished}/{n} generated in {time.time() - start:.2f}s")
yield item
await asyncio.sleep(1)
yield Reasoning(status="")
await asyncio.gather(*tasks)
@classmethod
async def _generate_text(
cls,
model: str,
messages: Messages,
media: MediaListType,
proxy: str,
temperature: float,
presence_penalty: float,
top_p: float,
frequency_penalty: float,
response_format: Optional[dict],
seed: Optional[int],
cache: bool,
stream: bool,
extra_parameters: list[str],
referrer: str,
api_key: str,
extra_body: dict,
**kwargs
) -> AsyncResult:
if not cache and seed is None:
seed = random.randint(0, 2**32)
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
extra_body.update({param: kwargs[param] for param in extra_parameters if param in kwargs})
if model in cls.audio_models:
if "audio" in extra_body and extra_body.get("audio", {}).get("voice") is None:
extra_body["audio"]["voice"] = cls.default_voice
elif "audio" not in extra_body:
extra_body["audio"] = {"voice": cls.default_voice}
if extra_body.get("audio", {}).get("format") is None:
extra_body["audio"]["format"] = "mp3"
stream = False
if "modalities" not in extra_body:
extra_body["modalities"] = ["text", "audio"]
data = filter_none(
messages=list(render_messages(messages, media)),
model=model,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
response_format=response_format,
stream=stream,
seed=None if model =="grok" else seed,
referrer=referrer,
**extra_body
)
headers = {"referer": referrer}
if api_key:
headers["authorization"] = f"Bearer {api_key}"
async with session.post(cls.openai_endpoint, json=data, headers=headers) as response:
if response.status in (400, 500):
debug.error(f"Error: {response.status} - Bad Request: {data}")
full_resposne = []
async for chunk in read_response(response, stream, format_media_prompt(messages), cls.get_dict(), kwargs.get("download_media", True)):
if isinstance(chunk, str):
full_resposne.append(chunk)
yield chunk
if full_resposne:
full_content = "".join(full_resposne)
if kwargs.get("action") == "next" and model != "evil":
tool_messages = []
for message in messages:
if message.get("role") == "user":
if isinstance(message.get("content"), str):
tool_messages.append({"role": "user", "content": message.get("content")})
elif isinstance(message.get("content"), list):
next_value = message.get("content").pop()
if isinstance(next_value, dict):
next_value = next_value.get("text")
if next_value:
tool_messages.append({"role": "user", "content": next_value})
tool_messages.append({"role": "assistant", "content": full_content})
data = {
"model": "openai",
"messages": tool_messages + FOLLOWUPS_DEVELOPER_MESSAGE,
"tool_choice": "required",
"tools": FOLLOWUPS_TOOLS
}
async with session.post(cls.openai_endpoint, json=data, headers=headers) as response:
try:
await raise_for_status(response)
tool_calls = (await response.json()).get("choices", [{}])[0].get("message", {}).get("tool_calls", [])
if tool_calls:
arguments = json.loads(tool_calls.pop().get("function", {}).get("arguments"))
if arguments.get("title"):
yield TitleGeneration(arguments.get("title"))
if arguments.get("followups"):
yield SuggestedFollowups(arguments.get("followups"))
except Exception as e:
debug.error("Error generating title and followups:", e) |