File size: 10,371 Bytes
1f39cf9
 
 
d871568
1f39cf9
 
 
 
61ac46b
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec7f11c
 
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ac46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f39cf9
 
 
 
 
d871568
1f39cf9
 
 
ec7f11c
61ac46b
 
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d871568
 
1f39cf9
 
 
 
 
61ac46b
 
 
1f39cf9
61ac46b
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d871568
 
 
1f39cf9
 
 
 
 
 
 
d871568
1f39cf9
 
 
 
 
 
 
 
 
 
 
 
 
61ac46b
1f39cf9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
from tqdm import tqdm
import utils
from utils import schedule
from PIL import Image
import gc
import numpy as np
from .attention import GatedSelfAttentionDense
from .models import process_input_embeddings, torch_device

@torch.no_grad()
def encode(model_dict, image, generator):
    """
    image should be a PIL object or numpy array with range 0 to 255
    """
    
    vae, dtype = model_dict.vae, model_dict.dtype
    
    if isinstance(image, Image.Image):
        w, h = image.size
        assert w % 8 == 0 and h % 8 == 0, f"h ({h}) and w ({w}) should be a multiple of 8"
        # w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
        # image = np.array(image.resize((w, h), resample=Image.Resampling.LANCZOS))[None, :]
        image = np.array(image)
    
    if isinstance(image, np.ndarray):
        assert image.dtype == np.uint8, f"Should have dtype uint8 (dtype: {image.dtype})"
        image = image.astype(np.float32) / 255.0
        image = image[None, ...]
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    
    assert isinstance(image, torch.Tensor), f"type of image: {type(image)}"
    
    image = image.to(device=torch_device, dtype=dtype)
    latents = vae.encode(image).latent_dist.sample(generator)
    
    latents = vae.config.scaling_factor * latents

    return latents

@torch.no_grad()
def decode(vae, latents):
    # scale and decode the image latents with vae
    scaled_latents = 1 / 0.18215 * latents
    with torch.no_grad():
        image = vae.decode(scaled_latents).sample
        
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    
    return images

@torch.no_grad()
def generate(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5, no_set_timesteps=False, scheduler_key='dpm_scheduler'):
    vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
    text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
    
    if not no_set_timesteps:
        scheduler.set_timesteps(num_inference_steps)

    for t in tqdm(scheduler.timesteps):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)

        latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    images = decode(vae, latents)
    
    ret = [latents, images]

    return tuple(ret)

def gligen_enable_fuser(unet, enabled=True):
    for module in unet.modules():
        if isinstance(module, GatedSelfAttentionDense):
            module.enabled = enabled

def prepare_gligen_condition(bboxes, phrases, dtype, tokenizer, text_encoder, num_images_per_prompt):
    batch_size = len(bboxes)
    
    assert len(phrases) == len(bboxes)
    max_objs = 30
    
    n_objs = min(max([len(bboxes_item) for bboxes_item in bboxes]), max_objs)
    boxes = torch.zeros((batch_size, max_objs, 4), device=torch_device, dtype=dtype)
    phrase_embeddings = torch.zeros((batch_size, max_objs, 768), device=torch_device, dtype=dtype)
    # masks is a 1D tensor deciding which of the enteries to be enabled
    masks = torch.zeros((batch_size, max_objs), device=torch_device, dtype=dtype)
    
    if n_objs > 0:
        for idx, (bboxes_item, phrases_item) in enumerate(zip(bboxes, phrases)):
            # the length of `bboxes_item` could be smaller than `n_objs` because n_objs takes the max of item length
            bboxes_item = torch.tensor(bboxes_item[:n_objs])
            boxes[idx, :bboxes_item.shape[0]] = bboxes_item

            tokenizer_inputs = tokenizer(phrases_item[:n_objs], padding=True, return_tensors="pt").to(torch_device)
            _phrase_embeddings = text_encoder(**tokenizer_inputs).pooler_output
            phrase_embeddings[idx, :_phrase_embeddings.shape[0]] = _phrase_embeddings
            assert bboxes_item.shape[0] == _phrase_embeddings.shape[0], f"{bboxes_item.shape[0]} != {_phrase_embeddings.shape[0]}"
            
            masks[idx, :bboxes_item.shape[0]] = 1

    # Classifier-free guidance
    repeat_times = num_images_per_prompt * 2
    condition_len = batch_size * repeat_times

    boxes = boxes.repeat(repeat_times, 1, 1)
    phrase_embeddings = phrase_embeddings.repeat(repeat_times, 1, 1)
    masks = masks.repeat(repeat_times, 1)
    masks[:condition_len // 2] = 0
    
    # print("shapes:", boxes.shape, phrase_embeddings.shape, masks.shape)
    
    return boxes, phrase_embeddings, masks, condition_len

@torch.no_grad()
def generate_gligen(model_dict, latents, input_embeddings, num_inference_steps, bboxes, phrases, num_images_per_prompt=1, gligen_scheduled_sampling_beta: float = 0.3, guidance_scale=7.5, 
    frozen_steps=20, frozen_mask=None,
    return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None, 
    offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True,
    return_box_vis=False, show_progress=True, save_all_latents=False, scheduler_key='dpm_scheduler', batched_condition=False, dynamic_num_inference_steps=False, fast_after_steps=None, fast_rate=2):
    """
    The `bboxes` should be a list, rather than a list of lists (one box per phrase, we can have multiple duplicated phrases).
    """
    vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
    
    text_embeddings, _, cond_embeddings = process_input_embeddings(input_embeddings)
    
    if latents.dim() == 5:
        # latents_all from the input side, different from the latents_all to be saved
        latents_all_input = latents
        latents = latents[0]
    else:
        latents_all_input = None
    
    # Just in case that we have in-place ops
    latents = latents.clone()
    
    if save_all_latents:
        # offload to cpu to save space
        if offload_latents_to_cpu:
            latents_all = [latents.cpu()]
        else:
            latents_all = [latents]
    
    scheduler.set_timesteps(num_inference_steps)
    if fast_after_steps is not None:
        scheduler.timesteps = schedule.get_fast_schedule(scheduler.timesteps, fast_after_steps, fast_rate)
    
    if frozen_mask is not None:
        frozen_mask = frozen_mask.to(dtype=dtype).clamp(0., 1.)

    # 5.1 Prepare GLIGEN variables
    if not batched_condition:
        # Add batch dimension to bboxes and phrases
        bboxes, phrases = [bboxes], [phrases]
    
    boxes, phrase_embeddings, masks, condition_len = prepare_gligen_condition(bboxes, phrases, dtype, tokenizer, text_encoder, num_images_per_prompt)
    
    if return_saved_cross_attn:
        saved_attns = []
    
    main_cross_attention_kwargs = {
        'offload_cross_attn_to_cpu': offload_cross_attn_to_cpu,
        'return_cond_ca_only': return_cond_ca_only,
        'return_token_ca_only': return_token_ca_only,
        'save_keys': saved_cross_attn_keys,
        'gligen': {
            'boxes': boxes,
            'positive_embeddings': phrase_embeddings,
            'masks': masks
        }
    }
    
    timesteps = scheduler.timesteps

    num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps))
    gligen_enable_fuser(unet, True)

    for index, t in enumerate(tqdm(timesteps, disable=not show_progress)):
        # Scheduled sampling
        if index == num_grounding_steps:
            gligen_enable_fuser(unet, False)
        
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)

        latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)

        main_cross_attention_kwargs['save_attn_to_dict'] = {}

        # predict the noise residual
        noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, 
                            cross_attention_kwargs=main_cross_attention_kwargs).sample
        
        if return_saved_cross_attn:
            saved_attns.append(main_cross_attention_kwargs['save_attn_to_dict'])
            
            del main_cross_attention_kwargs['save_attn_to_dict']

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
        
        if dynamic_num_inference_steps:
            schedule.dynamically_adjust_inference_steps(scheduler, index, t)

        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample
        
        if frozen_mask is not None and index < frozen_steps:
            latents = latents_all_input[index+1] * frozen_mask + latents * (1. - frozen_mask)
        
        if save_all_latents and (fast_after_steps is None or index < fast_after_steps):
            if offload_latents_to_cpu:
                latents_all.append(latents.cpu())
            else:
                latents_all.append(latents)

    # Turn off fuser for typical SD
    gligen_enable_fuser(unet, False)
    images = decode(vae, latents)
    
    ret = [latents, images]
    if return_saved_cross_attn:
        ret.append(saved_attns)
    if return_box_vis:
        pil_images = [utils.draw_box(Image.fromarray(image), bboxes_item, phrases_item) for image, bboxes_item, phrases_item in zip(images, bboxes, phrases)]
        ret.append(pil_images)
    if save_all_latents:
        latents_all = torch.stack(latents_all, dim=0)
        ret.append(latents_all)
    
    return tuple(ret)