File size: 5,093 Bytes
89f6983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# visualization-related functions are in vis
import numbers
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import utils

def get_token_attnv2(token_id, saved_attns, attn_key, visualize_step_start=10, input_ca_has_condition_only=False, return_np=False):
    """
    saved_attns: a list of saved_attn (list is across timesteps)
    
    moves to cpu by default
    """
    saved_attns = saved_attns[visualize_step_start:]    

    saved_attns = [saved_attn[attn_key].cpu() for saved_attn in saved_attns]
    
    attn = torch.stack(saved_attns, dim=0).mean(dim=0)
    
    # print("attn shape", attn.shape)
    
    # attn: (batch, head, spatial, text)

    if not input_ca_has_condition_only:
        assert attn.shape[0] == 2, f"Expect to have 2 items (uncond and cond), but found {attn.shape[0]} items"
        attn = attn[1]
    else:
        assert attn.shape[0] == 1, f"Expect to have 1 item (cond only), but found {attn.shape[0]} items"
        attn = attn[0]
    attn = attn.mean(dim=0)[:, token_id]
    H = W = int(math.sqrt(attn.shape[0]))
    attn = attn.reshape((H, W))
    
    if return_np:
        return attn.numpy()

    return attn

def shift_saved_attns_item(saved_attns_item, offset, guidance_attn_keys, horizontal_shift_only=False):
    """
    `horizontal_shift_only`: only shift horizontally. If you use `offset` from `compose_latents_with_alignment` with `horizontal_shift_only=True`, the `offset` already has y_offset = 0 and this option is not needed.
    """
    x_offset, y_offset = offset
    if horizontal_shift_only:
        y_offset = 0.
    
    new_saved_attns_item = {}
    for k in guidance_attn_keys:
        attn_map = saved_attns_item[k]
        
        attn_size = attn_map.shape[-2]
        attn_h = attn_w = int(math.sqrt(attn_size))
        # Example dimensions: [batch_size, num_heads, 8, 8, num_tokens]
        attn_map = attn_map.unflatten(2, (attn_h, attn_w))
        attn_map = utils.shift_tensor(
            attn_map, x_offset, y_offset, 
            offset_normalized=True, ignore_last_dim=True
        )
        attn_map = attn_map.flatten(2, 3)
        
        new_saved_attns_item[k] = attn_map
        
    return new_saved_attns_item

def shift_saved_attns(saved_attns, offset, guidance_attn_keys, **kwargs):
    # Iterate over timesteps
    shifted_saved_attns = [shift_saved_attns_item(saved_attns_item, offset, guidance_attn_keys, **kwargs) for saved_attns_item in saved_attns]
    
    return shifted_saved_attns


class GaussianSmoothing(nn.Module):
    """
    Apply gaussian smoothing on a
    1d, 2d or 3d tensor. Filtering is performed seperately for each channel
    in the input using a depthwise convolution.
    Arguments:
        channels (int, sequence): Number of channels of the input tensors. Output will
            have this number of channels as well.
        kernel_size (int, sequence): Size of the gaussian kernel.
        sigma (float, sequence): Standard deviation of the gaussian kernel.
        dim (int, optional): The number of dimensions of the data.
            Default value is 2 (spatial).
            
    Credit: https://discuss.pytorch.org/t/is-there-anyway-to-do-gaussian-filtering-for-an-image-2d-3d-in-pytorch/12351/10
    """

    def __init__(self, channels, kernel_size, sigma, dim=2):
        super(GaussianSmoothing, self).__init__()
        if isinstance(kernel_size, numbers.Number):
            kernel_size = [kernel_size] * dim
        if isinstance(sigma, numbers.Number):
            sigma = [sigma] * dim

        # The gaussian kernel is the product of the
        # gaussian function of each dimension.
        kernel = 1
        meshgrids = torch.meshgrid(
            [
                torch.arange(size, dtype=torch.float32)
                for size in kernel_size
            ]
        )
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
                torch.exp(-((mgrid - mean) / (2 * std)) ** 2)

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / torch.sum(kernel)

        # Reshape to depthwise convolutional weight
        kernel = kernel.view(1, 1, *kernel.size())
        kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))

        self.register_buffer('weight', kernel)
        self.groups = channels

        if dim == 1:
            self.conv = F.conv1d
        elif dim == 2:
            self.conv = F.conv2d
        elif dim == 3:
            self.conv = F.conv3d
        else:
            raise RuntimeError(
                'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(
                    dim)
            )

    def forward(self, input):
        """
        Apply gaussian filter to input.
        Arguments:
            input (torch.Tensor): Input to apply gaussian filter on.
        Returns:
            filtered (torch.Tensor): Filtered output.
        """
        return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups)