Spaces:
Sleeping
Sleeping
File size: 19,466 Bytes
46b3bd4 24bf956 46b3bd4 ba5cedf 46b3bd4 fd09fd4 46b3bd4 1d48263 46b3bd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
from setup_code import * # This imports everything from setup_code.py
class Query_Agent:
def __init__(self, pinecone_index, pinecone_index_python, openai_client) -> None:
# TODO: Initialize the Query_Agent agent
self.pinecone_index = pinecone_index
self.pinecone_index_python = pinecone_index_python
self.openai_client = openai_client
self.query_embedding = None
self.codbert_tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
self.codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
def get_codebert_embedding(self, code: str):
inputs = self.codbert_tokenizer(code, return_tensors="pt", max_length=512, truncation=True)
outputs = self.codebert_model(**inputs)
cb_embedding = outputs.last_hidden_state.mean(dim=1) # A simple way to pool the embeddings
cb_embedding = cb_embedding.detach().numpy()
cb_embedding = cb_embedding.tolist()
cb_embedding = cb_embedding[0]
return cb_embedding
def get_openai_embedding(self, text, model="text-embedding-ada-002"):
text = text.replace("\n", " ")
return self.openai_client.embeddings.create(input=[text], model=model).data[0].embedding
def query_vector_store(self, query, query_topic: str, index=None, k=5) -> str:
if index == None:
index = self.pinecone_index
if query_topic == 'ml':
self.query_embedding = self.get_openai_embedding(query)
elif query_topic == 'python':
index = self.pinecone_index_python
self.query_embedding = self.get_codebert_embedding(query)
def get_namespace(index):
stat = index.describe_index_stats()
stat_dict_key = stat['namespaces'].keys()
stat_dict_key_list = list(stat_dict_key)
first_key = stat_dict_key_list[0]
return first_key
ns = get_namespace(index)
if query_topic == 'ml':
matches_text = get_top_k_text(index.query(
namespace=ns,
top_k=k,
vector=self.query_embedding,
include_values=True,
include_metadata=True
)
)
elif query_topic == 'python':
matches_text = get_top_filename(index.query(
namespace=ns,
top_k=k,
vector=self.query_embedding,
include_values=True,
include_metadata=True
)
)
return matches_text
def process_query_response(self, head_agent, user_query, query_topic):
# Retrieve the history related to the query_topic
conversation = []
index = head_agent.pinecone_index
if query_topic == "ml":
conversation = Head_Agent.get_history_about('ml')
elif query_topic == 'python':
conversation = Head_Agent.get_history_about('python')
index = head_agent.pinecone_index_python
# get matches from Query_Agent, which uses Pinecone
user_query_plus_conversation = f"The current query is: {user_query}"
if len(conversation) > 0:
conversation_text = "\n".join(conversation)
user_query_plus_conversation += f'The current conversation is: {conversation_text}'
## self.query_embedding is set here
matches_text = self.query_vector_store(user_query_plus_conversation, query_topic, index)
if head_agent.relevant_documents_agent.is_relevant(matches_text, user_query_plus_conversation) or contains_py_filename(matches_text):
if query_topic == 'python':
user_query = user_query + " Please use Python Code in your response."
response = head_agent.answering_agent.generate_response(user_query, matches_text, conversation, head_agent.selected_mode)
else:
prompt_for_gpt = f"Return a response to this query: {user_query} in the context of this conversation: {conversation}. Please use language appropriate for a {head_agent.selected_mode}."
response = get_completion(head_agent.openai_client, prompt_for_gpt)
response = "[EXTERNAL] " + response
return response
class Answering_Agent:
def __init__(self, openai_client) -> None:
self.client = openai_client
def generate_response(self, query, docs, conv_history, selected_mode):
prompt_for_gpt = f"Based on this text in angle brackets: <{docs}>, please summarize a response to this query: {query} in the context of this conversation: {conv_history}. Please use language appropriate for a {selected_mode}. Do not use the phrase `in the context of conversation` in your response"
return get_completion(self.client, prompt_for_gpt)
def generate_response_topic(self, topic_desc, topic_text, conv_history, selected_mode):
prompt_for_gpt = f"Please return a summary response on this topic: {topic_desc} using this text as best as possible {topic_text} in the context of this {conv_history}. Please use language appropriate for a {selected_mode}."
return get_completion(self.client, prompt_for_gpt)
def generate_image(self, text):
if DEBUG:
return None, ""
dall_e_prompt_from_gpt = f"Based on this text, repeated here in double square brackets for your reference: [[{text}]], please generate a simple caption that I can use with dall-e to generate an instructional image."
dall_e_text = get_completion(self.client, dall_e_prompt_from_gpt)
# Write open_ai text
with open("dall_e_prompts.txt", "a") as f:
f.write(f"{dall_e_text}\n\n")
# get image from dall-e
image = Head_Agent.text_to_image(self.client, dall_e_text)
# once u have get a caption from GPT
image_caption_prompt = f"This text in double square brackets is used to prompt dall-e: [[{dall_e_text}]]. Please generate a simple caption that I can use to display with the image dall-e will create. Only return that caption."
image_caption = get_completion(self.client, image_caption_prompt)
#st.write(f"image_caption_prompt): {image_caption_prompt}")
return (image, image_caption)
class Concepts_Agent:
def __init__(self):
self._df = pd.read_csv("concepts_final.csv")
#self.topic_matrix = [[0] * 5 for _ in range(12)]
def increase_cell(self, i, j):
st.session_state.topic_matrix[i][j] += + 1
def display_topic_matrix(self):
headers = [f"Topic {i}" for i in range(1, 6)]
row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]
topic_df = pd.DataFrame(st.session_state.topic_matrix, row_indices, headers)
st.table(topic_df)
st.write(f"Total Topics covered: {sum(sum(row) for row in st.session_state.topic_matrix)}")
def display_topic_matrix(self):
headers = [f"Topic {i}" for i in range(1, 6)]
row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]
topic_df = pd.DataFrame(st.session_state.topic_matrix, row_indices, headers)
st.table(topic_df)
st.write(f"Total Topics covered: {sum(sum(row) for row in st.session_state.topic_matrix)}")
def display_topic_matrix_star(self):
headers = [f"Topic {i}" for i in range(1, 6)]
row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]
# Replace 1 with the Unicode star symbol
topic_matrix_star = [[chr(9733) if val == 1 else val for val in row] for row in st.session_state.topic_matrix]
topic_df = pd.DataFrame(topic_matrix_star, row_indices, headers)
st.table(topic_df)
st.write(f"Total Topics covered: {sum(sum(row) for row in st.session_state.topic_matrix)}")
def display_topic_matrix_as_image(self):
headers = [f"Topic {i}" for i in range(1, 6)]
row_indices = [f"{self._df['concept'][i-1]}" for i in range(1, 13)]
topic_df = pd.DataFrame(st.session_state.topic_matrix, row_indices, headers)
df_html = topic_df.to_html(index=False)
# Create an image of the HTML table
image = Image.new("RGB", (800, 600), color="white") # Define image size
draw = ImageDraw.Draw(image)
draw.text((10, 10), df_html, fill="black") # Position of the table in the image
# Save the image to a byte stream
image_byte_array = io.BytesIO()
image.save(image_byte_array, format="PNG")
image_byte_array.seek(0)
# Now you can use the image_byte_array in Streamlit as an image
st.image(image_byte_array, caption="DataFrame as Image")
return image_byte_array
# for each query_embedding, we will look through the df of concepts
# we'll do a cosine_similarity of that query_embedding with each of the embeddings for each concept
def find_top_concept_index(self, query_embedding):
top_sim = 0
top_concept_index = 0
for index, row in self._df.iterrows():
float_array = np.array(ast.literal_eval(row['embedding'])).reshape(1, -1)
qe_array = np.array(query_embedding).reshape(1, -1)
sim = cosine_similarity(float_array, qe_array)
if sim[0][0] > top_sim:
top_sim = sim[0][0]
top_concept_index = index
return top_concept_index
def get_top_k_text_list(self, matches, k):
text_list = []
for i in range(0, k):
text_list.append(matches.get('matches')[i]['metadata']['text'])
return text_list
def write_to_file(self, filename):
self._df.to_csv(filename, index=False) # Setting index=False to avoid writing row indices
class Head_Agent:
def __init__(self, openai_key, pinecone_key) -> None:
# TODO: Initialize the Head_Agent
self.openai_key = openai_key
self.pinecone_key = pinecone_key
self.selected_mode = ""
self.openai_client = OpenAI(api_key=self.openai_key)
self.pc = Pinecone(api_key=self.pinecone_key)
self.pinecone_index = self.pc.Index("index-600")
self.pinecone_index_python = self.pc.Index("index-python-files")
self.query_embedding_local = None
self.setup_sub_agents()
def setup_sub_agents(self):
self.classify_agent = Classify_Agent(self.openai_client)
self.query_agent = Query_Agent(self.pinecone_index, self.pinecone_index_python, self.openai_client) # took away embeddings argument since not used
self.answering_agent = Answering_Agent(self.openai_client)
self.relevant_documents_agent = Relevant_Documents_Agent(self.openai_client)
self.ca = Concepts_Agent()
@staticmethod
def get_conversation():
# ... (code for getting conversation history)
return Head_Agent.get_history_about()
@staticmethod
def get_history_about(topic=None):
history = []
for message in st.session_state.messages:
role = message["role"]
content = message["content"]
if topic == None:
if role == "user":
history.append(f"{content} ")
else:
if message["topic"] == topic:
history.append(f"{content} ")
# st.write(f"user history in get_conversation is {history}")
if history != None:
history = history[-2:]
return history
@staticmethod
def text_to_image(openai_client, text):
model = "dall-e-3"
size = "512x512"
with st.spinner("Generating ..."):
response = openai_client.images.generate(
model=model,
prompt = text,
n=1,
size="1024x1024"
)
image_url = response.data[0].url
with urllib.request.urlopen(image_url) as image_url:
img = Image.open(BytesIO(image_url.read()))
return img
def get_default_value(self, variable):
if variable == "openai_model": return "gpt-3.5-turbo"
elif variable == "messages": return []
elif variable == "stage": return 0
elif variable == "query_embedding": return None
elif variable == "topic_matrix": return [[0] * 5 for _ in range(12)]
else:
st.write(f"Error: get_default_value, variable not defined: {variable}")
return None
def initialize_session_state(self):
session_state_variables = ["openai_model", "messages", "stage", "query_embedding", "topic_matrix"]
for variable in session_state_variables:
if variable not in st.session_state:
st.session_state[variable] = self.get_default_value(variable)
def display_selection_options(self):
modes = ['college student', 'middle school student', '1st grade student', 'high school student', 'grad student']
self.selected_mode = st.selectbox("Select your education level:", modes)
def display_chat_messages(self):
# Display existing chat messages
for message in st.session_state.messages:
if message["role"] == "assistant":
with st.chat_message("assistant"):
st.write(message["content"])
if message['image'] != None:
st.image(message['image'])
else:
with st.chat_message("user"):
st.write(message["content"])
def main_loop(self):
st.title("Machine Learning Text Guide Chatbot")
self.initialize_session_state()
self.display_selection_options()
self.display_chat_messages()
### Wait for user input ###
if user_query := st.chat_input("What would you like to chat about?"):
with st.chat_message("user"): st.write(user_query)
with st.chat_message("assistant"):
response = ""; topic = None; image = None; caption = ""; st.session_state.stage = 0
# Get the current conversation with new user query to check for users' intention
conversation = self.get_conversation()
user_query_plus_conversation = f"The current query is: {user_query}. The current conversation is: {conversation}"
classify_query = self.classify_agent.classify_query(user_query_plus_conversation)
if classify_query == general_greeting_num:
response = "How can I assist you today?"
elif classify_query == general_question_num:
response = "Please ask a question about Machine Learning or Python Code."
elif classify_query == obnoxious_num:
response = "Please dont be obnoxious."
elif classify_query == progress_num:
self.ca.display_topic_matrix_star()
elif classify_query == default_num:
response = "I'm not sure how to respond to that."
elif classify_query == machine_learning_num:
response = self.query_agent.process_query_response(self, user_query, 'ml')
st.session_state.query_embedding = self.query_agent.get_openai_embedding(user_query)
image, caption = self.answering_agent.generate_image(response)
topic = "ml"
st.session_state.stage = 1
elif classify_query == python_code_num:
response = self.query_agent.process_query_response(self, user_query, 'python')
image, caption = self.answering_agent.generate_image(response)
image = None
topic = "python"
st.session_state.stage = 0
else:
response = "I'm not sure how to respond to that."
# ... (get AI response and display it)
st.write(response)
if image and caption != "": st.image(image, caption)
st.session_state.messages.append({"role": "user", "content": user_query, "topic": topic, "image": None})
st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})
if st.session_state.stage == 1: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ###
# it looks like after we hit st.button, we go back to the top of the st.session_state.stage == 1 loop, and we lose the query_embedding_local
# we use st.session_state.query_embedding to get the concept index
top_concept_index = self.ca.find_top_concept_index(st.session_state.query_embedding)
concept_name = self.ca._df['concept'][top_concept_index]
st.write(f"Your question is associated to the Fundamental Concept in Machine Learning: {concept_name}.\n\n")
st.write(f"Here are some topics you can explore to help you learn about {concept_name}, pick one.")
response = ""; image = None; topic = ""
topic0_desc = self.ca._df['topic_0_desc'][top_concept_index]
topic1_desc = self.ca._df['topic_1_desc'][top_concept_index]
topic2_desc = self.ca._df['topic_2_desc'][top_concept_index]
topic3_desc = self.ca._df['topic_3_desc'][top_concept_index]
topic4_desc = self.ca._df['topic_4_desc'][top_concept_index]
matrix_row = st.session_state.topic_matrix[top_concept_index]
if (matrix_row[0] == 0 and st.session_state.stage):
if st.button(topic0_desc): process_button_click(self, 0, topic0_desc, top_concept_index)
if (matrix_row[1] == 0 and st.session_state.stage):
if st.button(topic1_desc): process_button_click(self, 1, topic1_desc, top_concept_index)
if (matrix_row[2] == 0 and st.session_state.stage):
if st.button(topic2_desc): process_button_click(self, 2, topic2_desc, top_concept_index)
if (matrix_row[3] == 0 and st.session_state.stage):
if st.button(topic3_desc): process_button_click(self, 3, topic3_desc, top_concept_index)
if (matrix_row[4] == 0 and st.session_state.stage):
if st.button(topic4_desc): process_button_click(self, 4, topic4_desc, top_concept_index)
def process_button_click(head, button_index, topic_desc, top_concept_index):
with st.chat_message("user"): st.write(topic_desc)
# we then assign to st.session_state.query_embedding the embedding for the topic_desc
st.session_state.query_embedding = head.query_agent.get_openai_embedding(topic_desc)
topic_text_index = 'topic_' + str(button_index)
topic_text = head.ca._df[topic_text_index][top_concept_index]
response = head.answering_agent.generate_response_topic(topic_desc, topic_text, head.get_conversation(), head.selected_mode)
image, caption = head.answering_agent.generate_image(topic_text)
topic = topic_desc
st.session_state.topic_matrix[top_concept_index][button_index] += 1
st.write(response)
if image and caption != "": st.image(image, caption)
# ... (add response & image to message)
st.session_state.messages.append({"role": "user", "content": topic_desc, "topic": "ml", "image": None})
st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})
st.session_state.stage = 0
if __name__ == "__main__":
head_agent = Head_Agent(OPENAI_KEY, pc_apikey)
DEBUG = False
head_agent.main_loop()
#main()
|