File size: 6,938 Bytes
bbf3291
ebbf7cc
bbf3291
 
 
 
 
 
 
 
d0c6342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c939fa
 
bbf3291
d0c6342
 
 
ebbf7cc
d0c6342
 
 
 
 
 
 
bbf3291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextStreamer, Qwen2VLForConditionalGeneration
import torch
from PIL import Image
import re 
import requests
from io import BytesIO
import copy
import secrets
from pathlib import Path
from argparse import ArgumentParser
from pathlib import Path

import copy
import gradio as gr
import os
import re
import secrets
import tempfile
from pathlib import Path

import copy
import os
import re
import secrets
import tempfile
from transformers import AutoTokenizer
from transformers.generation import GenerationConfig

DEFAULT_CKPT_PATH = 'Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4'
device_map = "auto"

tokenizer = AutoTokenizer.from_pretrained(
        DEFAULT_CKPT_PATH, trust_remote_code=True,
    )
model = Qwen2VLForConditionalGeneration.from_pretrained(
        DEFAULT_CKPT_PATH,
        device_map=device_map,
        trust_remote_code=True,
    ).eval()
model.generation_config = GenerationConfig.from_pretrained(
        DEFAULT_CKPT_PATH, trust_remote_code=True,
    )

BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."

def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

def predict(_chatbot, task_history):
    chat_query = _chatbot[-1][0]
    query = task_history[-1][0]
    history_cp = copy.deepcopy(task_history)
    full_response = ""

    history_filter = []
    pic_idx = 1
    pre = ""
    for i, (q, a) in enumerate(history_cp):
        if isinstance(q, (tuple, list)):
            q = f'Picture {pic_idx}: <img>{q[0]}</img>'
            pre += q + '\n'
            pic_idx += 1
        else:
            pre += q
            history_filter.append((pre, a))
            pre = ""
    history, message = history_filter[:-1], history_filter[-1][0]
    response, history = model.chat(tokenizer, message, history=history)
    image = tokenizer.draw_bbox_on_latest_picture(response, history)
    if image is not None:
        temp_dir = secrets.token_hex(20)
        temp_dir = Path("/tmp") / temp_dir
        temp_dir.mkdir(exist_ok=True, parents=True)
        name = f"tmp{secrets.token_hex(5)}.jpg"
        filename = temp_dir / name
        image.save(str(filename))
        _chatbot[-1] = (_parse_text(chat_query), (str(filename),))
        chat_response = response.replace("<ref>", "")
        chat_response = chat_response.replace(r"</ref>", "")
        chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)
        if chat_response != "":
            _chatbot.append((None, chat_response))
    else:
        _chatbot[-1] = (_parse_text(chat_query), response)
    full_response = _parse_text(response)
    task_history[-1] = (query, full_response)
    return _chatbot
    
def add_text(history, task_history, text):
    task_text = text
    if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
        task_text = text[:-1]
    history = history + [(_parse_text(text), None)]
    task_history = task_history + [(task_text, None)]
    return history, task_history, ""

def add_file(history, task_history, file):
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def reset_user_input():
    return gr.update(value="")

def reset_state(task_history):
    task_history.clear()
    return []
    
def regenerate(_chatbot, task_history):
    print("Regenerate clicked")
    print("Before:", task_history, _chatbot)
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
        _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    print("After:", task_history, _chatbot)
    return predict(_chatbot, task_history)

css = '''
.gradio-container{max-width:800px !important}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Qwen-VL-Chat Bot")
    gr.Markdown("## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud **Space by [@Artificialguybr](https://twitter.com/artificialguybr). Test the [QwenLLM-14B](https://huggingface.co/spaces/artificialguybr/qwen-14b-chat-demo) here for free!</center>")
    chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=520)
    query = gr.Textbox(lines=2, label='Input')
    task_history = gr.State([])

    with gr.Row():
        addfile_btn = gr.UploadButton("📁 Upload", file_types=["image"])
        submit_btn = gr.Button("🚀 Submit")
        regen_btn = gr.Button("🤔️ Regenerate")
        empty_bin = gr.Button("🧹 Clear History")
    
    gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
    submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
        predict, [chatbot, task_history], [chatbot], show_progress=True
    )
    submit_btn.click(reset_user_input, [], [query])
    empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
    regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
    addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)

demo.launch()