Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,728 Bytes
9d22eee 2a5f9fb c848631 2a5f9fb c848631 df66f6e efeee6d 9d22eee 314f91a 2a5f9fb efeee6d c848631 9d22eee c848631 9d22eee c848631 65323e6 9d22eee c848631 9d22eee c848631 9d22eee 2a5f9fb efeee6d 2a5f9fb c848631 2a5f9fb efeee6d 2a5f9fb 9d22eee 2a5f9fb 9833cdb 2a5f9fb 9d22eee 2a5f9fb 9d22eee 2a5f9fb b1a1395 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
from typing import Any
import pandas as pd # type: ignore
from src.display.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
## Leaderboard columns
auto_eval_column_dict: list[tuple[str, type, Any]] = []
# Init
auto_eval_column_dict.append(("model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)))
auto_eval_column_dict.append(("model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)))
# Scores
auto_eval_column_dict.append(("average", ColumnContent, ColumnContent("Average ⬆️", "number", True)))
for task in Tasks:
auto_eval_column_dict.append((task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)))
# Dashboard
auto_eval_column_dict.append(("dashboard_link", ColumnContent, ColumnContent("Dashboard", "markdown", True)))
# Model information
auto_eval_column_dict.append(("model_type", ColumnContent, ColumnContent("Type", "str", False)))
auto_eval_column_dict.append(("architecture", ColumnContent, ColumnContent("Architecture", "str", False)))
auto_eval_column_dict.append(("weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)))
auto_eval_column_dict.append(("precision", ColumnContent, ColumnContent("Precision", "str", False)))
auto_eval_column_dict.append(("license", ColumnContent, ColumnContent("Hub License", "str", False)))
auto_eval_column_dict.append(("params", ColumnContent, ColumnContent("#Params (B)", "number", False)))
auto_eval_column_dict.append(("likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)))
auto_eval_column_dict.append(("still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)))
auto_eval_column_dict.append(("revision", ColumnContent, ColumnContent("Model sha", "str", False, False)))
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(("dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)))
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", True)
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["GPTQ", "None"]:
return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|