File size: 13,739 Bytes
1173b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from torch.nn import (
    Linear,
    Conv2d,
    BatchNorm1d,
    BatchNorm2d,
    PReLU,
    ReLU,
    Sigmoid,
    Dropout,
    MaxPool2d,
    AdaptiveAvgPool2d,
    Sequential,
    Module,
    Parameter,
)
import torch
from collections import namedtuple
import math

##################################  Original Arcface Model #############################################################


class Flatten(Module):
    def forward(self, input):
        return input.view(input.size(0), -1)


def l2_norm(input, axis=1):
    norm = torch.norm(input, 2, axis, True)
    output = torch.div(input, norm)
    return output


class SEModule(Module):
    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2d(1)
        self.fc1 = Conv2d(
            channels, channels // reduction, kernel_size=1, padding=0, bias=False
        )
        self.relu = ReLU(inplace=True)
        self.fc2 = Conv2d(
            channels // reduction, channels, kernel_size=1, padding=0, bias=False
        )
        self.sigmoid = Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x


class bottleneck_IR(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                BatchNorm2d(depth),
            )
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            BatchNorm2d(depth),
        )

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


class bottleneck_IR_SE(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR_SE, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride, bias=False),
                BatchNorm2d(depth),
            )
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
            PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
            BatchNorm2d(depth),
            SEModule(depth, 16),
        )

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut


class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])):
    """A named tuple describing a ResNet block."""


def get_block(in_channel, depth, num_units, stride=2):
    return [Bottleneck(in_channel, depth, stride)] + [
        Bottleneck(depth, depth, 1) for i in range(num_units - 1)
    ]


def get_blocks(num_layers):
    if num_layers == 50:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=4),
            get_block(in_channel=128, depth=256, num_units=14),
            get_block(in_channel=256, depth=512, num_units=3),
        ]
    elif num_layers == 100:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=13),
            get_block(in_channel=128, depth=256, num_units=30),
            get_block(in_channel=256, depth=512, num_units=3),
        ]
    elif num_layers == 152:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=8),
            get_block(in_channel=128, depth=256, num_units=36),
            get_block(in_channel=256, depth=512, num_units=3),
        ]
    return blocks


class Backbone(Module):
    def __init__(self, num_layers, drop_ratio, mode="ir"):
        super(Backbone, self).__init__()
        assert num_layers in [50, 100, 152], "num_layers should be 50,100, or 152"
        assert mode in ["ir", "ir_se"], "mode should be ir or ir_se"
        blocks = get_blocks(num_layers)
        if mode == "ir":
            unit_module = bottleneck_IR
        elif mode == "ir_se":
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(
            Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)
        )
        self.output_layer = Sequential(
            BatchNorm2d(512),
            Dropout(drop_ratio),
            Flatten(),
            Linear(512 * 7 * 7, 512),
            BatchNorm1d(512),
        )
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(
                        bottleneck.in_channel, bottleneck.depth, bottleneck.stride
                    )
                )
        self.body = Sequential(*modules)

    def forward(self, x):
        x = self.input_layer(x)
        x = self.body(x)
        x = self.output_layer(x)
        return l2_norm(x)


##################################  MobileFaceNet #############################################################


class Conv_block(Module):
    def __init__(
        self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1
    ):
        super(Conv_block, self).__init__()
        self.conv = Conv2d(
            in_c,
            out_channels=out_c,
            kernel_size=kernel,
            groups=groups,
            stride=stride,
            padding=padding,
            bias=False,
        )
        self.bn = BatchNorm2d(out_c)
        self.prelu = PReLU(out_c)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.prelu(x)
        return x


class Linear_block(Module):
    def __init__(
        self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1
    ):
        super(Linear_block, self).__init__()
        self.conv = Conv2d(
            in_c,
            out_channels=out_c,
            kernel_size=kernel,
            groups=groups,
            stride=stride,
            padding=padding,
            bias=False,
        )
        self.bn = BatchNorm2d(out_c)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class Depth_Wise(Module):
    def __init__(
        self,
        in_c,
        out_c,
        residual=False,
        kernel=(3, 3),
        stride=(2, 2),
        padding=(1, 1),
        groups=1,
    ):
        super(Depth_Wise, self).__init__()
        self.conv = Conv_block(
            in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)
        )
        self.conv_dw = Conv_block(
            groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride
        )
        self.project = Linear_block(
            groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1)
        )
        self.residual = residual

    def forward(self, x):
        if self.residual:
            short_cut = x
        x = self.conv(x)
        x = self.conv_dw(x)
        x = self.project(x)
        if self.residual:
            output = short_cut + x
        else:
            output = x
        return output


class Residual(Module):
    def __init__(
        self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)
    ):
        super(Residual, self).__init__()
        modules = []
        for _ in range(num_block):
            modules.append(
                Depth_Wise(
                    c,
                    c,
                    residual=True,
                    kernel=kernel,
                    padding=padding,
                    stride=stride,
                    groups=groups,
                )
            )
        self.model = Sequential(*modules)

    def forward(self, x):
        return self.model(x)


class MobileFaceNet(Module):
    def __init__(self, embedding_size):
        super(MobileFaceNet, self).__init__()
        self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1))
        self.conv2_dw = Conv_block(
            64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64
        )
        self.conv_23 = Depth_Wise(
            64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128
        )
        self.conv_3 = Residual(
            64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.conv_34 = Depth_Wise(
            64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256
        )
        self.conv_4 = Residual(
            128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.conv_45 = Depth_Wise(
            128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512
        )
        self.conv_5 = Residual(
            128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)
        )
        self.conv_6_sep = Conv_block(
            128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0)
        )
        self.conv_6_dw = Linear_block(
            512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)
        )
        self.conv_6_flatten = Flatten()
        self.linear = Linear(512, embedding_size, bias=False)
        self.bn = BatchNorm1d(embedding_size)

    def forward(self, x):
        out = self.conv1(x)

        out = self.conv2_dw(out)

        out = self.conv_23(out)

        out = self.conv_3(out)

        out = self.conv_34(out)

        out = self.conv_4(out)

        out = self.conv_45(out)

        out = self.conv_5(out)

        out = self.conv_6_sep(out)

        out = self.conv_6_dw(out)

        out = self.conv_6_flatten(out)

        out = self.linear(out)

        out = self.bn(out)
        return l2_norm(out)


##################################  Arcface head #############################################################


class Arcface(Module):
    # implementation of additive margin softmax loss in https://arxiv.org/abs/1801.05599
    def __init__(self, embedding_size=512, classnum=51332, s=64.0, m=0.5):
        super(Arcface, self).__init__()
        self.classnum = classnum
        self.kernel = Parameter(torch.Tensor(embedding_size, classnum))
        # initial kernel
        self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
        self.m = m  # the margin value, default is 0.5
        self.s = s  # scalar value default is 64, see normface https://arxiv.org/abs/1704.06369
        self.cos_m = math.cos(m)
        self.sin_m = math.sin(m)
        self.mm = self.sin_m * m  # issue 1
        self.threshold = math.cos(math.pi - m)

    def forward(self, embbedings, label):
        # weights norm
        nB = len(embbedings)
        kernel_norm = l2_norm(self.kernel, axis=0)
        # cos(theta+m)
        cos_theta = torch.mm(embbedings, kernel_norm)
        #         output = torch.mm(embbedings,kernel_norm)
        cos_theta = cos_theta.clamp(-1, 1)  # for numerical stability
        cos_theta_2 = torch.pow(cos_theta, 2)
        sin_theta_2 = 1 - cos_theta_2
        sin_theta = torch.sqrt(sin_theta_2)
        cos_theta_m = cos_theta * self.cos_m - sin_theta * self.sin_m
        # this condition controls the theta+m should in range [0, pi]
        #      0<=theta+m<=pi
        #     -m<=theta<=pi-m
        cond_v = cos_theta - self.threshold
        cond_mask = cond_v <= 0
        keep_val = cos_theta - self.mm  # when theta not in [0,pi], use cosface instead
        cos_theta_m[cond_mask] = keep_val[cond_mask]
        output = (
            cos_theta * 1.0
        )  # a little bit hacky way to prevent in_place operation on cos_theta
        idx_ = torch.arange(0, nB, dtype=torch.long)
        output[idx_, label] = cos_theta_m[idx_, label]
        output *= (
            self.s
        )  # scale up in order to make softmax work, first introduced in normface
        return output


##################################  Cosface head #############################################################


class Am_softmax(Module):
    # implementation of additive margin softmax loss in https://arxiv.org/abs/1801.05599
    def __init__(self, embedding_size=512, classnum=51332):
        super(Am_softmax, self).__init__()
        self.classnum = classnum
        self.kernel = Parameter(torch.Tensor(embedding_size, classnum))
        # initial kernel
        self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
        self.m = 0.35  # additive margin recommended by the paper
        self.s = 30.0  # see normface https://arxiv.org/abs/1704.06369

    def forward(self, embbedings, label):
        kernel_norm = l2_norm(self.kernel, axis=0)
        cos_theta = torch.mm(embbedings, kernel_norm)
        cos_theta = cos_theta.clamp(-1, 1)  # for numerical stability
        phi = cos_theta - self.m
        label = label.view(-1, 1)  # size=(B,1)
        index = cos_theta.data * 0.0  # size=(B,Classnum)
        index.scatter_(1, label.data.view(-1, 1), 1)
        index = index.byte()
        output = cos_theta * 1.0
        output[index] = phi[index]  # only change the correct predicted output
        output *= (
            self.s
        )  # scale up in order to make softmax work, first introduced in normface
        return output